A294830 Decimal expansion of the sum of the reciprocals of the numbers (k+1)*(5*k+3) = A147874(k+2) for k >= 0.
4, 8, 1, 7, 0, 1, 7, 7, 4, 4, 9, 5, 8, 2, 8, 7, 7, 7, 0, 7, 7, 0, 7, 5, 9, 2, 9, 3, 6, 1, 9, 1, 4, 7, 5, 5, 2, 3, 4, 1, 8, 7, 4, 5, 9, 3, 7, 4, 8, 4, 1, 8, 0, 4, 7, 3, 0, 4, 5, 9, 0, 1, 4, 1, 8, 8, 1, 5, 0, 5, 5, 7, 2, 3, 1, 7, 1, 8, 8, 9, 7, 5, 6, 8, 1, 9, 7, 7, 0, 2, 2, 1, 4, 0, 1, 6, 0, 3, 5
Offset: 0
Examples
0.481701774495828777077075929361914755234187459374841804730459014188150...
References
- Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Digamma Function
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); phi:= (1 + Sqrt(5))/2; ((5/2)*Log(5) - (2*phi-1)*(Log(phi) + (Pi(R)/5)*Sqrt(7 - 4*phi)))/4; // G. C. Greubel, Aug 30 2018
-
Mathematica
RealDigits[((5/2)*Log[5] - (2*GoldenRatio - 1)*(Log[GoldenRatio] + (Pi/5)*Sqrt[7 - 4*GoldenRatio]))/4, 10, 100][[1]] (* G. C. Greubel, Aug 30 2018 *)
-
PARI
default(realprecision, 100); phi=(1+sqrt(5))/2; ((5/2)*log(5) - (2*phi-1)*(log(phi) + (Pi/5)*sqrt(7-4*phi)))/4 \\ G. C. Greubel, Aug 30 2018
Comments