cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294880 Number of divisors of n that are in Perrin sequence, A001608.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 0, 3, 0, 2, 2, 1, 1, 2, 0, 3, 2, 2, 0, 3, 1, 1, 1, 2, 1, 4, 0, 1, 1, 2, 2, 3, 0, 1, 2, 3, 0, 3, 0, 2, 2, 1, 0, 3, 1, 3, 3, 1, 0, 2, 1, 2, 1, 2, 0, 5, 0, 1, 2, 1, 1, 3, 0, 3, 1, 4, 0, 3, 0, 1, 2, 1, 1, 3, 0, 3, 1, 1, 0, 4, 2, 1, 2, 2, 0, 5, 1, 1, 1, 1, 1, 3, 0, 2, 1, 3, 0, 4, 0, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Examples

			For n = 22, with divisors [1, 2, 11, 22], both 2 and 22 are in A001608, thus a(22) = 2.
For n = 644, with divisors [1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644], 2, 7 and 644 are in A001608, thus a(644) = 3.
		

Crossrefs

Programs

  • Mathematica
    With[{s = LinearRecurrence[{0, 1, 1}, {3, 2, 5}, 15]}, Table[DivisorSum[n, 1 &, MemberQ[s, #] &], {n, 1, s[[-1]]}]] (* Amiram Eldar, Jan 01 2024 *)
  • PARI
    A001608(n) = if(n<0, 0, polsym(x^3-x-1, n)[n+1]);
    A294878(n) = { my(k=1,v); while((v=A001608(k))A294880(n) = sumdiv(n,d,A294878(d));

Formula

a(n) = Sum_{d|n} A294878(d).
a(n) = A294879(n) + A294878(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = -1/5 + Sum_{n>=3} 1/A001608(n) = 1.603595519775230150708... . - Amiram Eldar, Jan 01 2024