cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A294891 Number of proper divisors d of n such that Stern polynomial B(d,x) is irreducible.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 0, 2, 2, 2, 0, 2, 1, 2, 1, 2, 0, 3, 0, 1, 2, 2, 2, 2, 0, 2, 2, 2, 0, 3, 0, 2, 2, 2, 0, 2, 1, 3, 2, 2, 0, 2, 2, 2, 2, 2, 0, 3, 0, 2, 2, 1, 2, 3, 0, 2, 2, 3, 0, 2, 0, 2, 3, 2, 2, 3, 0, 2, 1, 2, 0, 3, 2, 2, 2, 2, 0, 3, 2, 2, 2, 2, 2, 2, 0, 2, 2, 3, 0, 3, 0, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Examples

			For n=50, with proper divisors [1, 2, 5, 10, 25], 2, 5, and 25 are larger than one and included in A186891, thus a(50) = 3.
		

Crossrefs

Cf. also A294881, A294901.
Differs from A087624 for the first time at n=50.

Programs

  • PARI
    ps(n) = if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2)));
    A283991(n) = polisirreducible(ps(n));
    A294891(n) = sumdiv(n,d,(dA283991(d));

Formula

a(n) = Sum_{d|n, dA283991(d).
a(n) + A294892(n) = A032741(n).
a(n) = A294893(n) - A283991(n).

A294882 Number of proper divisors of n that are not irreducible when their binary expansion is interpreted as polynomial over GF(2).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 2, 3, 1, 3, 1, 4, 1, 1, 1, 5, 2, 1, 2, 3, 1, 5, 1, 4, 1, 2, 2, 6, 1, 1, 1, 6, 1, 4, 1, 3, 4, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 1, 2, 1, 9, 1, 1, 3, 5, 2, 4, 1, 4, 2, 5, 1, 9, 1, 1, 3, 3, 1, 4, 1, 8, 3, 1, 1, 8, 3, 2, 2, 5, 1, 9, 1, 4, 1, 1, 2, 9, 1, 3, 3, 6, 1, 5, 1, 5, 5
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2017

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n, dA091225(d)).
a(n) + A294881(n) = A032741(n).
For n > 1, a(n) = A294884(n) + A091225(n) - 1.

A294883 Number of divisors of n that are irreducible when their binary expansion is interpreted as polynomial over GF(2).

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 2, 1, 1, 2, 2, 0, 2, 1, 2, 1, 2, 0, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 3, 0, 2, 1, 1, 1, 2, 1, 2, 1, 2, 0, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 0, 2, 1, 2, 2, 2, 2, 3, 0, 1, 1, 2, 0, 3, 0, 1, 2, 2, 0, 2, 3, 1, 2, 2, 1, 2, 1, 2, 2, 2, 0, 2, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2017

Keywords

Comments

Number of terms of A014580 that divide n.

Crossrefs

Cf. A091209 (gives a subset of zeros).
Cf. also A234741, A234742, A294893.

Programs

  • PARI
    A294883(n) = sumdiv(n,d,polisirreducible(Mod(1, 2)*Pol(binary(d))));

Formula

a(n) = Sum_{d|n} A091225(d).
a(n) + A294884(n) = A000005(n).
a(n) = A294881(n) + A091225(n).

A305813 Restricted growth sequence transform of A305812, a filter sequence constructed from the GF(2)[X]-factorization signatures of the proper divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 5, 2, 6, 2, 4, 5, 7, 2, 8, 2, 9, 4, 4, 2, 10, 11, 4, 12, 6, 2, 10, 2, 13, 4, 14, 5, 15, 2, 4, 4, 16, 2, 17, 2, 6, 18, 12, 2, 19, 3, 20, 14, 6, 2, 21, 5, 10, 4, 12, 2, 22, 2, 4, 6, 23, 5, 24, 2, 25, 12, 26, 2, 27, 2, 4, 28, 6, 4, 29, 2, 30, 31, 4, 2, 32, 33, 12, 12, 10, 2, 34, 4, 35, 4, 4, 5, 36, 2, 8, 8, 37, 2, 38, 2, 10, 39
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ Needs also code from A305788:
    up_to = 65537;
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A305812(n) = if(1==n,0, my(m=1); fordiv(n,d,if((d>1)&&(dA305788(d)-1))); (m));
    v305813 = rgs_transform(vector(up_to, n, A305812(n)));
    A305813(n) = v305813[n];

Formula

For all i, j:
a(i) = a(j) => A000005(i) = A000005(j).
a(i) = a(j) => A294881(i) = A294881(j).
a(i) = a(j) => A294882(i) = A294882(j).
Showing 1-4 of 4 results.