A294894 Number of divisors d of n such that either d=1 or Stern polynomial B(d,x) is reducible.
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 3, 2, 4, 1, 6, 1, 6, 2, 2, 1, 9, 1, 2, 4, 6, 1, 5, 1, 4, 2, 5, 1, 10, 1, 2, 3, 4, 1, 5, 1, 8, 4, 2, 1, 9, 2, 2, 2, 6, 1, 9, 1, 4, 2, 2, 1, 10, 1, 4, 4, 6, 1, 5, 1, 6, 5
Offset: 1
Keywords
Examples
For n=25, with divisors [1, 5, 25], both B(5,x) and B(25,x) are irreducible, so only 1 is counted and a(25)=1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..22001
Comments