cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A294894 Number of divisors d of n such that either d=1 or Stern polynomial B(d,x) is reducible.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 3, 2, 4, 1, 6, 1, 6, 2, 2, 1, 9, 1, 2, 4, 6, 1, 5, 1, 4, 2, 5, 1, 10, 1, 2, 3, 4, 1, 5, 1, 8, 4, 2, 1, 9, 2, 2, 2, 6, 1, 9, 1, 4, 2, 2, 1, 10, 1, 4, 4, 6, 1, 5, 1, 6, 5
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Examples

			For n=25, with divisors [1, 5, 25], both B(5,x) and B(25,x) are irreducible, so only 1 is counted and a(25)=1.
		

Crossrefs

Cf. also A294884, A294904.
Differs from A033273 for the first time at n=25.

Programs

  • PARI
    ps(n) = if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2)));
    A283991(n) = polisirreducible(ps(n));
    A294894(n) = sumdiv(n,d,(0==A283991(d)));

Formula

a(n) = Sum_{d|n} (1-A283991(d)).
a(n) + A294893(n) = A000005(n).
a(n) = 1 + A294892(n) - A283991(n).

A294882 Number of proper divisors of n that are not irreducible when their binary expansion is interpreted as polynomial over GF(2).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 2, 3, 1, 3, 1, 4, 1, 1, 1, 5, 2, 1, 2, 3, 1, 5, 1, 4, 1, 2, 2, 6, 1, 1, 1, 6, 1, 4, 1, 3, 4, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 1, 2, 1, 9, 1, 1, 3, 5, 2, 4, 1, 4, 2, 5, 1, 9, 1, 1, 3, 3, 1, 4, 1, 8, 3, 1, 1, 8, 3, 2, 2, 5, 1, 9, 1, 4, 1, 1, 2, 9, 1, 3, 3, 6, 1, 5, 1, 5, 5
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2017

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n, dA091225(d)).
a(n) + A294881(n) = A032741(n).
For n > 1, a(n) = A294884(n) + A091225(n) - 1.

A294883 Number of divisors of n that are irreducible when their binary expansion is interpreted as polynomial over GF(2).

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 2, 1, 1, 2, 2, 0, 2, 1, 2, 1, 2, 0, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 3, 0, 2, 1, 1, 1, 2, 1, 2, 1, 2, 0, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 0, 2, 1, 2, 2, 2, 2, 3, 0, 1, 1, 2, 0, 3, 0, 1, 2, 2, 0, 2, 3, 1, 2, 2, 1, 2, 1, 2, 2, 2, 0, 2, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2017

Keywords

Comments

Number of terms of A014580 that divide n.

Crossrefs

Cf. A091209 (gives a subset of zeros).
Cf. also A234741, A234742, A294893.

Programs

  • PARI
    A294883(n) = sumdiv(n,d,polisirreducible(Mod(1, 2)*Pol(binary(d))));

Formula

a(n) = Sum_{d|n} A091225(d).
a(n) + A294884(n) = A000005(n).
a(n) = A294881(n) + A091225(n).

A305815 Restricted growth sequence transform of A305814, a filter sequence constructed from the GF(2)[X]-factorization signatures of the divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 2, 6, 7, 8, 2, 9, 2, 5, 6, 10, 11, 12, 2, 13, 14, 5, 15, 16, 3, 5, 17, 9, 15, 16, 2, 18, 5, 19, 20, 21, 2, 5, 22, 23, 2, 24, 15, 9, 25, 26, 2, 27, 7, 9, 28, 9, 15, 29, 14, 16, 22, 26, 2, 30, 2, 5, 9, 31, 32, 33, 2, 34, 20, 35, 15, 36, 2, 5, 37, 9, 5, 38, 15, 39, 40, 5, 41, 42, 43, 26, 5, 16, 15, 44, 45, 46, 5, 5, 8, 47, 2, 12, 48, 49, 41, 50
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ Needs also code from A305788:
    up_to = 65537;
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A305814(n) = { my(m=1); fordiv(n, d, if(d>1, m *= prime(A305788(d)-1))); (m); };
    v305815 = rgs_transform(vector(up_to, n, A305814(n)));
    A305815(n) = v305815[n];

Formula

For all i, j:
a(i) = a(j) => A000005(i) = A000005(j).
a(i) = a(j) => A294883(i) = A294883(j).
a(i) = a(j) => A294884(i) = A294884(j).
Showing 1-4 of 4 results.