cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A187795 Sum of the abundant divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 20, 0, 0, 0, 36, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 66, 0, 0, 0, 60, 0, 42, 0, 0, 0, 0, 0, 84, 0, 0, 0, 0, 0, 72, 0, 56, 0, 0, 0, 122, 0, 0, 0, 0, 0, 66, 0, 0, 0, 70, 0, 162, 0, 0, 0, 0, 0, 78, 0, 140, 0, 0, 0, 138, 0, 0, 0, 88, 0, 138, 0, 0, 0, 0, 0, 180
Offset: 1

Views

Author

Timothy L. Tiffin, Jan 06 2013

Keywords

Comments

Sum of divisors d of n with sigma(d) > 2*d.
a(n) = n when n is a primitive abundant number (A091191). - Alonso del Arte, Jan 19 2013

Examples

			a(12) = 12 because the divisors of 12 are 1, 2, 3, 4, 6, 12, but of those only 12 is abundant.
a(13) = 0 because the divisors of 13 are 1 and 13, neither of which is abundant.
		

Crossrefs

Programs

  • Maple
    A187795 := proc(n)
        local a,d;
        a :=0 ;
        for d in numtheory[divisors](n) do
            if numtheory[sigma](d) > 2* d then
                a := a+d ;
            end if;
        end do:
        return a;
    end proc:
    seq(A187795(n),n=1..100) ; # R. J. Mathar, Apr 27 2017
  • Mathematica
    Table[Total@ Select[Divisors@ n, DivisorSigma[1, #] > 2 # &], {n, 96}] (* Michael De Vlieger, Jul 16 2016 *)
  • PARI
    a(n)=sumdiv(n,d,(sigma(d,-1)>2)*d) \\ Charles R Greathouse IV, Jan 15 2013
    
  • Python
    from sympy import divisors, divisor_sigma
    def A187795(n): return sum(d for d in divisors(n,generator=True) if divisor_sigma(d) > 2*d) # Chai Wah Wu, Sep 22 2021

Formula

From Antti Karttunen, Nov 14 2017: (Start)
a(n) = Sum_{d|n} A294937(d)*d.
a(n) = A294889(n) + (A294937(n)*n).
If A294889(n) > 0, then a(n) = A294889(n)+n, otherwise a(n) = A294930(n)*n.
a(n) + A187794(n) + A187793(n) = A000203(n).
(End)

A294929 Number of proper divisors of n that are abundant (A005101).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Examples

			The proper divisors of 24 are 1, 2, 3, 4, 6, 8, 12. Only one of these, 12, is abundant (in A005101), thus a(24) = 1.
The proper divisors of 120 are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60. Six of these are abundant: 12, 20, 24, 30, 40, 60, thus a(120) = 6.
		

Crossrefs

Programs

Formula

a(n) = Sum_{d|n, dA294937(d).
a(n) = A080224(n) - A294937(n).
a(n) + A294928(n) = A032741(n).

A294886 Sum of deficient proper divisors of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 10, 1, 10, 9, 15, 1, 15, 1, 22, 11, 14, 1, 18, 6, 16, 13, 28, 1, 36, 1, 31, 15, 20, 13, 19, 1, 22, 17, 30, 1, 48, 1, 40, 33, 26, 1, 34, 8, 43, 21, 46, 1, 42, 17, 36, 23, 32, 1, 40, 1, 34, 41, 63, 19, 72, 1, 58, 27, 74, 1, 27, 1, 40, 49, 64, 19, 84, 1, 46, 40, 44, 1, 52, 23, 46, 33, 92, 1, 90, 21
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Comments

Sum of divisors of n smaller than n that are deficient numbers (in A005100).

Examples

			Proper divisors of 90 are: 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45. Of these 1, 2, 3, 5, 9, 10, 15 and 45 are in A005100, thus a(90) = 1+2+3+5+9+10+15+45 = 90.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, # < n && DivisorSigma[1, #] < 2*# &]; Array[a, 100] (* Amiram Eldar, Mar 14 2024 *)
  • PARI
    A294886(n) = sumdiv(n, d, (d
    				

Formula

a(n) = Sum_{d|n, dA294934(d)*d.
a(n) = A187793(n) - (A294934(n)*n).
a(n) + A294887(n) = A001065(n).

A294888 Sum of nonabundant proper divisors of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 24, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 25, 1, 22, 17, 30, 1, 54, 1, 40, 33, 26, 1, 40, 8, 43, 21, 46, 1, 48, 17, 64, 23, 32, 1, 46, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 33, 1, 40, 49, 64, 19, 90, 1, 46, 40, 44, 1, 86, 23, 46, 33, 92, 1, 96, 21
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Comments

Sum of divisors of n smaller than n that are nonabundant numbers (in A263837).

Examples

			Proper divisors of 90 are 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45. Of these 1, 2, 3, 5, 6, 9, 10, 15 and 45 are in A263837, thus a(90) = 1+2+3+5+6+9+10+15+45 = 96.
		

Crossrefs

Cf. A294900 (fixed points).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Boole[# < n && DivisorSigma[1, #] <= 2#] * #&];
    Array[a, 100] (* Jean-François Alcover, Nov 17 2017 *)
  • PARI
    A294888(n) = sumdiv(n, d, (d
    				

Formula

a(n) = Sum_{d|n, dA294935(d)*d.
a(n) + A294889(n) = A001065(n).

A294887 Sum of nondeficient proper divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 36, 0, 0, 0, 20, 0, 6, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 24, 0, 28, 0, 0, 0, 68, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 96, 0, 0, 0, 0, 0, 6, 0, 60, 0, 0, 0, 88, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 90, 0, 0, 0, 20, 0, 6, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Comments

Sum of divisors n smaller than n that are nondeficient numbers (in A023196).

Examples

			Proper divisors of 90 are 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, and 45. Of these 6, 18 and 30 are in A023196, thus a(90) = 6+18+30 = 54.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, # < n && DivisorSigma[1, #] >= 2*# &]; Array[a, 100] (* Amiram Eldar, Mar 14 2024 *)
  • PARI
    A294887(n) = sumdiv(n, d, (d=(2*d))*d);

Formula

a(n) = Sum_{d|n, dA294936(d)*d. - Typo in A-number corrected by Antti Karttunen, Apr 04 2022
a(n) + A294886(n) = A001065(n).

A296074 Sum of deficiencies of the proper divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 3, 6, 1, 5, 1, 8, 7, 4, 1, 9, 1, 9, 9, 12, 1, 2, 5, 14, 8, 13, 1, 16, 1, 5, 13, 18, 11, 3, 1, 20, 15, 8, 1, 24, 1, 21, 18, 24, 1, -9, 7, 27, 19, 25, 1, 20, 15, 14, 21, 30, 1, -1, 1, 32, 24, 6, 17, 40, 1, 33, 25, 40, 1, -27, 1, 38, 32, 37, 17, 48, 1, -1, 22, 42, 1, 9, 21, 44, 31, 26, 1, 18, 19, 45, 33, 48, 23, -36, 1, 53, 36, 33
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2017

Keywords

Examples

			For n = 6, whose proper divisors are 1, 2, 3, their deficiencies are 1, 1, 2, thus a(6) = 1+1+2 = 4.
For n = 12, whose proper divisors are 1, 2, 3, 4, 6, their deficiencies are 1, 1, 2, 1, 0, thus a(12) = 1+1+2+1+0 = 5.
		

Crossrefs

Cf. A033879.
Cf. also A294886, A294887, A294888, A294889, A293438 (product of).

Programs

  • Mathematica
    f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2; a[1] = 0; a[n_] := Module[{f = FactorInteger[n]}, 3 * Times @@ f1 @@@ f - Times @@ f2 @@@ f - 2*n]; Array[a, 100] (* Amiram Eldar, Dec 04 2023 *)
  • PARI
    A033879(n) = ((2*n)-sigma(n));
    A296074(n) = sumdiv(n,d,(dA033879(d));

Formula

a(n) = Sum_{d|n, dA033879(d).
a(n) = A296075(n) - A033879(n).
Sum_{k=1..n} a(k) ~ (Pi^2/4 - Pi^4/72 - 1) * n^2. - Amiram Eldar, Dec 04 2023

A254880 Let 's' denote the sum of the abundant numbers in the aliquot parts of x. Sequence lists numbers x such that sigma(s)-s is equal to x.

Original entry on oeis.org

4240, 75640, 193720, 259120, 327104, 669520, 1385480, 1613240, 2231240, 4185472, 12228352, 26373640, 35095456, 37497520, 45085240, 48211120, 62156512, 64754272, 81263920, 82228432, 84099808, 109455424, 111330208, 118899616, 118988440, 129663880, 137013536, 139367320
Offset: 1

Views

Author

Paolo P. Lava, Feb 10 2015

Keywords

Examples

			Aliquot divisors of 4240 are 1, 2, 4, 5, 8, 10, 16, 20, 40, 53, 80, 106, 212, 265, 424, 530, 848, 1060, 2120 and the abundant numbers are 20, 40, 80, 1060, 2120. Their sum is 3320 and sigma(3320) - 3320 = 4240.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]); b:=0;
    for k from 1 to nops(a)-1 do if sigma(a[k])>2*a[k]
    then b:=b+a[k]; fi; od; if sigma(b)-b=n
    then print(n); fi; od; end: P(10^9);
  • Mathematica
    seqQ[n_] := Module[{s = Total@Select[Most[Divisors[n]], DivisorSigma[1,#] > 2# &]}, s>0 && DivisorSigma[1,s] - s == n]; Select[Range[10^6], seqQ] (* Amiram Eldar, Mar 20 2019 *)

Formula

A001065(A294889(a(n))) = a(n).

Extensions

a(3) inserted and a(11)-a(28) added by Amiram Eldar, Mar 20 2019
Showing 1-7 of 7 results.