A187795 Sum of the abundant divisors of n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 20, 0, 0, 0, 36, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 66, 0, 0, 0, 60, 0, 42, 0, 0, 0, 0, 0, 84, 0, 0, 0, 0, 0, 72, 0, 56, 0, 0, 0, 122, 0, 0, 0, 0, 0, 66, 0, 0, 0, 70, 0, 162, 0, 0, 0, 0, 0, 78, 0, 140, 0, 0, 0, 138, 0, 0, 0, 88, 0, 138, 0, 0, 0, 0, 0, 180
Offset: 1
Examples
a(12) = 12 because the divisors of 12 are 1, 2, 3, 4, 6, 12, but of those only 12 is abundant. a(13) = 0 because the divisors of 13 are 1 and 13, neither of which is abundant.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Index entries for sequences related to sums of divisors
Programs
-
Maple
A187795 := proc(n) local a,d; a :=0 ; for d in numtheory[divisors](n) do if numtheory[sigma](d) > 2* d then a := a+d ; end if; end do: return a; end proc: seq(A187795(n),n=1..100) ; # R. J. Mathar, Apr 27 2017
-
Mathematica
Table[Total@ Select[Divisors@ n, DivisorSigma[1, #] > 2 # &], {n, 96}] (* Michael De Vlieger, Jul 16 2016 *)
-
PARI
a(n)=sumdiv(n,d,(sigma(d,-1)>2)*d) \\ Charles R Greathouse IV, Jan 15 2013
-
Python
from sympy import divisors, divisor_sigma def A187795(n): return sum(d for d in divisors(n,generator=True) if divisor_sigma(d) > 2*d) # Chai Wah Wu, Sep 22 2021
Comments