A294890 Number of divisors of n that are primitively abundant (A091191).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 3
Offset: 1
Keywords
Examples
Divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24. Only 12 is in A091191, thus a(24) = 1. Divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36. Of these 12 and 18 are found in A091191, thus a(36) = 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..70560
Programs
-
Mathematica
q[n_] := Count[Divisors[n], ?(DivisorSigma[1, #] > 2*# &)] == 1; a[n] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* Amiram Eldar, Mar 14 2024 *)
-
PARI
A294937(n) = (sigma(n)>(2*n)); A294929(n) = sumdiv(n, d, (d
A294937(d)); A294930(n) = (A294937(n)*(0==A294929(n))); A294890(n) = sumdiv(n, d, A294930(d));
Formula
a(n) = Sum_{d|n} A294930(d).
Comments