cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294891 Number of proper divisors d of n such that Stern polynomial B(d,x) is irreducible.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 0, 2, 2, 2, 0, 2, 1, 2, 1, 2, 0, 3, 0, 1, 2, 2, 2, 2, 0, 2, 2, 2, 0, 3, 0, 2, 2, 2, 0, 2, 1, 3, 2, 2, 0, 2, 2, 2, 2, 2, 0, 3, 0, 2, 2, 1, 2, 3, 0, 2, 2, 3, 0, 2, 0, 2, 3, 2, 2, 3, 0, 2, 1, 2, 0, 3, 2, 2, 2, 2, 0, 3, 2, 2, 2, 2, 2, 2, 0, 2, 2, 3, 0, 3, 0, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Examples

			For n=50, with proper divisors [1, 2, 5, 10, 25], 2, 5, and 25 are larger than one and included in A186891, thus a(50) = 3.
		

Crossrefs

Cf. also A294881, A294901.
Differs from A087624 for the first time at n=50.

Programs

  • PARI
    ps(n) = if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2)));
    A283991(n) = polisirreducible(ps(n));
    A294891(n) = sumdiv(n,d,(dA283991(d));

Formula

a(n) = Sum_{d|n, dA283991(d).
a(n) + A294892(n) = A032741(n).
a(n) = A294893(n) - A283991(n).