cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294893 Number of divisors d of n such that Stern polynomial B(d,x) is irreducible.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 2, 3, 2, 2, 2, 1, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 3, 1, 2, 1, 2, 3, 2, 3, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 3, 2, 2, 2, 3, 2, 1, 2, 2, 3, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Comments

Number of terms > 1 of A186891 that divide n.

Examples

			For n=25, with divisors [1, 5, 25], both B(5,x) and B(25,x) are irreducible, thus a(25)=2.
		

Crossrefs

Cf. also A294883.
Differs from A001221 for the first time at n=25.

Programs

  • PARI
    ps(n) = if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2)));
    A283991(n) = polisirreducible(ps(n));
    A294893(n) = sumdiv(n,d,A283991(d));

Formula

a(n) = Sum_{d|n} A283991(d).
a(n) + A294894(n) = A000005(n).
a(n) = A294891(n) + A283991(n).