cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294904 Number of divisors of n that are in A175526.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 3, 0, 3, 0, 3, 1, 1, 0, 5, 0, 1, 2, 3, 0, 4, 0, 4, 1, 1, 1, 6, 0, 1, 1, 5, 0, 4, 0, 3, 3, 1, 0, 7, 1, 2, 1, 3, 0, 5, 1, 5, 1, 1, 0, 8, 0, 1, 3, 5, 1, 4, 0, 3, 1, 4, 0, 9, 0, 1, 2, 3, 1, 4, 0, 7, 3, 1, 0, 8, 1, 1, 1, 5, 0, 8, 1, 3, 1, 1, 0, 9, 0, 3, 3, 5, 0, 4, 0, 5, 4, 1, 0, 9, 0, 4, 0, 7, 0, 4, 1, 3, 3, 1, 0, 12
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Comments

Number of terms of A175526 that divide n.

Crossrefs

Programs

  • Mathematica
    q[n_] := DivisorSum[n, DigitCount[#, 2, 1] &] > 2 * DigitCount[n, 2, 1]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* Amiram Eldar, Jul 20 2023 *)
  • PARI
    A292257(n) = sumdiv(n,d,(dA294905(n) = (A292257(n) <= hammingweight(n));
    A294904(n) = sumdiv(n,d,(0==A294905(d)));

Formula

a(n) = Sum_{d|n} (1-A294905(d)).
a(n) = 1 + (A294902(n)-A294905(n)).
a(n) + A294903(n) = A000005(n).