cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294919 Numbers n such that 2^(n-1), (2*n-1)*(2^((n-1)/2)), (4*ceiling((1/4)*n)-2), and (2^((n+1)/2) + floor((3/4)*n)*2^(((n+1)/2)+1)) are all congruent to 1 (mod n).

Original entry on oeis.org

5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269, 277, 293, 317, 349, 373, 389, 397, 421, 461, 509, 541, 557, 613, 653, 661, 677, 701, 709, 733, 757, 773, 797, 821, 829, 853, 877, 941, 997, 1013, 1021, 1061, 1069, 1093, 1109, 1117, 1181, 1213
Offset: 1

Views

Author

Jonas Kaiser, Nov 10 2017

Keywords

Comments

It appears that A007521 is a subsequence.
a(118) = 3277 = 29*113 is the first nonprime term.

Crossrefs

Programs

  • Mathematica
    okQ[n_] := AllTrue[{2^(n-1), (2*n-1)*(2^((n-1)/2)), (4*Ceiling@(n/4) - 2), (2^((n+1)/2) + Floor@((3/4)*n)*2^(((n+1)/2) + 1))}, Mod[#, n] == 1&];
    Select[Range[1300], okQ] (* Jean-François Alcover, Feb 18 2019 *)
  • PARI
    isok(n) = (n%2) && lift((Mod(2, n)^(n-1))==1)&&lift((Mod((2*n-1), n)*Mod(2, n)^((n-1)/2)) == 1)&&lift((Mod(((4*ceil((1/4)*n)-2)), n) )== 1)&&lift((Mod(2, n)^((n+1)/2) +Mod(floor((3/4)*n),n)*Mod(2, n)^(((n+1)/2)+1 ))== 1)

Extensions

More terms from Alois P. Heinz, Nov 10 2017