A294950 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1-j^(k*j)*x^j)^j in powers of x.
1, 1, 1, 1, 1, 3, 1, 1, 9, 6, 1, 1, 33, 90, 13, 1, 1, 129, 2220, 1162, 24, 1, 1, 513, 59178, 265132, 17435, 48, 1, 1, 2049, 1594836, 67180330, 49163241, 310193, 86, 1, 1, 8193, 43048770, 17181660628, 152662629227, 13121450895, 6286826, 160
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, ... 3, 9, 33, 129, 513, ... 6, 90, 2220, 59178, 1594836, ... 13, 1162, 265132, 67180330, 17181660628, ... 24, 17435, 49163241, 152662629227, 476855156157129, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..52, flattened
Crossrefs
Formula
A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(2+k*j)) * A(n-j,k) for n > 0.