cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294958 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*((k-2)^2+k)/2).

Original entry on oeis.org

1, 1, 3, 9, 28, 75, 198, 494, 1243, 3061, 7500, 18055, 43057, 101292, 236178, 545218, 1248480, 2835059, 6390360, 14298631, 31778782, 70168935, 153993321, 335977369, 728962258, 1573189113, 3377881482, 7217395643, 15348900996, 32494548816, 68494383520, 143773075158, 300568066729
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2017

Keywords

Comments

Euler transform of A060354.

Crossrefs

Programs

  • Maple
    N:=100:
    S:= series(mul(1/(1 - x^k)^(k*((k-2)^2+k)/2),k=1..N),x,N+1):
    seq(coeff(S,x,k),k=0..N); # Robert Israel, Nov 12 2017
  • Mathematica
    nmax = 32; CoefficientList[Series[Product[1/(1 - x^k)^(k ((k - 2)^2 + k)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 ((d - 2)^2 + d)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A060354(k).
a(n) ~ exp(2*Zeta'(-1) + 3*Zeta(3) / (8*Pi^2) - Pi^16 / (1036800000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (36000 * Zeta(5)^2) - 2*Zeta(3)^2 / (15*Zeta(5)) + Zeta'(-3)/2 + (-Pi^12 / (3600000 * 2^(2/5) * 3^(1/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (150 * 2^(2/5) * 3^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (12000 * 2^(4/5) * 3^(2/5) * Zeta(5)^(7/5)) + 2^(1/5) * Zeta(3) / (3*Zeta(5))^(2/5)) * n^(2/5) - (Pi^4 / (60 * 2^(1/5) * (3*Zeta(5))^(3/5))) * n^(3/5) + (5*(3*Zeta(5))^(1/5) / 2^(8/5)) * n^(4/5)) * (3*Zeta(5))^(53/400) / (2^(47/200) * sqrt(5*Pi) * n^(253/400)). - Vaclav Kotesovec, Nov 12 2017