A294977 Square array T(n, k) read by antidiagonals, n > 0 and k > 0: T(n, k) is the smallest positive integer that, when written in binary, contains both binary n and binary k as substrings.
1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 4, 3, 4, 5, 6, 5, 12, 12, 5, 6, 7, 6, 11, 4, 11, 6, 7, 8, 14, 6, 20, 20, 6, 14, 8, 9, 8, 7, 12, 5, 12, 7, 8, 9, 10, 9, 24, 28, 13, 13, 28, 24, 9, 10, 11, 10, 19, 8, 23, 6, 23, 8, 19, 10, 11, 12, 11, 26, 9, 40, 14, 14, 40, 9, 26
Offset: 1
Examples
Array T(n, k) begins (in decimal): n\k| 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 2 2 6 4 5 6 14 8 9 10 11 12 3| 3 6 3 12 11 6 7 24 19 26 11 12 4| 4 4 12 4 20 12 28 8 9 20 44 12 5| 5 5 11 20 5 13 23 40 37 10 11 44 6| 6 6 6 12 13 6 14 24 25 26 22 12 7| 7 14 7 28 23 14 7 56 39 58 23 28 8| 8 8 24 8 40 24 56 8 72 40 88 24 Array T(n, k) begins (in binary): n\k| 1 10 11 100 101 110 111 1000 1001 1010 ----+--------------------------------------------------------------------------- 1| 1 10 11 100 101 110 111 1000 1001 1010 10| 10 10 110 100 101 110 1110 1000 1001 1010 11| 11 110 11 1100 1011 110 111 11000 10011 11010 100| 100 100 1100 100 10100 1100 11100 1000 1001 10100 101| 101 101 1011 10100 101 1101 10111 101000 100101 1010 110| 110 110 110 1100 1101 110 1110 11000 11001 11010 111| 111 1110 111 11100 10111 1110 111 111000 100111 111010 1000| 1000 1000 11000 1000 101000 11000 111000 1000 1001000 101000
Links
- Rémy Sigrist, PARI program for A294977
Programs
-
PARI
See Links section.
Formula
T(n, n) = n.
T(n, 1) = n.
T(n, k) = T(k, n).
T(T(n, k), k) = T(n, k) (for any fixed n > 0, the function k -> T(n, k) is a projection).
A165819(n) = T(n, 2*n-1).
A165820(n) = T(n, n^2).
T(n, k) >= n with equality iff the binary representation of k appears in the binary representation of n.
T(n, k) >= max(n, k).
Comments