A295001 a(n) = nextprime(1/(2/sigma[-1](P(n)) - 1)) where P(n) = Product_{0 <= k < n} a(k), sigma[-1](x) = sigma(x)/x, a(0) = 4.
4, 11, 23, 257, 13007, 44512049, 46880563785749, 125637016478802067649031191, 652182699863469019760217209096329987925268834143233, 1800254420479597976179975458181139131985404009703136640765845238082635790500153934999846722641241849
Offset: 0
Examples
Let Q(x) = 1/(2/sigma[-1](x) - 1), P(n) = Product(a(k), k=0..n-1), and start with a(0) = 4 = P(1). Then: Q(P(1)) = 7, a(1) = 11. (4*7 is perfect, P(2) = 4*11 is deficient.) Q(P(2)) = 21, a(2) = 23. (4*11*19 is weird, P(3) = 4*11*23 is deficient.) Q(P(3)) = 252, a(3) = 257. (P(3)*251 is weird, P(4) = 4*11*23*257 is deficient.) Q(P(4)) = 13003.2, a(4) = 13007. (P(4)*13003 is weird, P(5) = 4*11*23*257*13007 is deficient.) Q(P(5)) = 44512006.7..., a(5) = 44512049. (P(5)*44511949 is weird ; P(6) = 4*11*257*44512049 is deficient.) P(6)*prevprime(a(6)) is semiperfect, i.e., no more weird.
Links
- M. F. Hasler, Table of n, a(n) for n = 0..13
Comments