cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295005 Numbers n such that the largest digit of n^2 is 5.

Original entry on oeis.org

5, 15, 35, 39, 45, 50, 55, 65, 71, 105, 112, 115, 145, 150, 155, 185, 188, 205, 211, 229, 235, 335, 350, 365, 368, 388, 389, 390, 450, 461, 485, 495, 500, 501, 502, 505, 550, 579, 585, 595, 635, 650, 652, 665, 671, 710, 711, 715, 718, 729, 735, 745, 1005, 1015, 1050
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Examples

			39 is in this sequence because 39^2 = 1521 has 5 as largest digit.
		

Crossrefs

Cf. A295015 (the corresponding squares), A277959 .. A277961 (same for digit 2 .. 4), A295006 .. A295009 (same for digit 6 .. 9).
Cf. A000290 (the squares).

Programs

  • Mathematica
    Select[Sqrt[ #]&/@(FromDigits/@Select[Tuples[ Range[ 0,5],7],Max[#] == 5&]),IntegerQ] (* Harvey P. Dale, Sep 23 2021 *)
  • PARI
    select( is_A295005(n)=n&&vecmax(digits(n^2))==5 , [0..999]) \\ The "n&&" avoids an error message for n=0.
    
  • Python
    def aupto(limit):
      alst = []
      for k in range(1, limit+1):
        if max(str(k*k)) == "5": alst.append(k)
      return alst
    print(aupto(1050)) # Michael S. Branicky, May 15 2021

Formula

a(n) = sqrt(A295015(n)), where sqrt = A000196 or A000194 or A003059.