cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295104 a(n) = (1/n) times the n-th derivative of the fourth tetration of x (power tower of order 4) x^^4 at x=1.

Original entry on oeis.org

1, 1, 3, 14, 72, 489, 3722, 33641, 334520, 3761688, 45898272, 615641806, 8863726704, 137786878644, 2279658872696, 40229212948404, 750433323448128, 14801457167223872, 306869893647304896, 6683254543551623904, 152281219079726183040, 3626445842114839589952
Offset: 1

Views

Author

Alois P. Heinz, Nov 14 2017

Keywords

Comments

First term < 0: a(329).

Crossrefs

Column k=4 of A295028.
Cf. A179405.

Programs

  • Maple
    f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
    a:= n-> (n-1)!*coeff(series(f(4), x, n+1), x, n):
    seq(a(n), n=1..23);
  • Mathematica
    f[n_] := f[n] = If[n == 0, 1, (x + 1)^f[n - 1]];
    a[n_] := (n - 1)!*SeriesCoefficient[f[4], {x, 0, n}];
    Array[a, 23] (* Jean-François Alcover, May 31 2018, from Maple *)

Formula

a(n) = 1/n * [(d/dx)^n x^^4]_{x=1}.
a(n) = (n-1)! * [x^n] (x+1)^^4.
a(n) = 1/n * A179405(n).