cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295109 a(n) = (1/n) times the n-th derivative of the ninth tetration of x (power tower of order 9) x^^9 at x=1.

Original entry on oeis.org

1, 1, 3, 14, 96, 849, 9362, 123101, 1888016, 32703888, 631924752, 13408344586, 310042428528, 7748365327260, 208162961545016, 5980417481391924, 182983003358805504, 5940081852766157024, 203920022890052114112, 7381110402800795329344, 280947854368982073172224
Offset: 1

Views

Author

Alois P. Heinz, Nov 14 2017

Keywords

Crossrefs

Column k=9 of A295028.
Cf. A277540.

Programs

  • Maple
    f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
    a:= n-> (n-1)!*coeff(series(f(9), x, n+1), x, n):
    seq(a(n), n=1..23);
  • Mathematica
    f[n_] := f[n] = If[n == 0, 1, (x + 1)^f[n - 1]];
    a[n_] := (n - 1)!*SeriesCoefficient[f[9], {x, 0, n}];
    Array[a, 23] (* Jean-François Alcover, May 31 2018, from Maple *)

Formula

a(n) = 1/n * [(d/dx)^n x^^9]_{x=1}.
a(n) = (n-1)! * [x^n] (x+1)^^9.
a(n) = 1/n * A277540(n).