A295126 Denominator of Sum_{d|n} mu(n/d)/d, where mu is the Möbius function A008683.
1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 6, 13, 7, 15, 16, 17, 9, 19, 5, 7, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 32, 33, 17, 35, 18, 37, 19, 13, 10, 41, 7, 43, 22, 45, 23, 47, 24, 49, 25, 51, 13, 53, 27, 11, 28, 19, 29, 59, 15, 61, 31, 21, 64, 65, 33, 67, 17, 69, 35
Offset: 1
Examples
a(6) = 1 since mu(6)/1 + mu(3)/2 + mu(2)/3 + mu(1)/6 = 1 - 1/2 - 1/3 + 1/6 = 1/3.
Links
- Mats Granvik and Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= n -> denom(add(numtheory:-mobius(n/k)/k, k=numtheory:-divisors(n))): map(f, [$1..100]); # Robert Israel, Nov 16 2017
-
Mathematica
f[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[d]/Reverse@ d)]; Denominator@ Array[f, 70] f[p_, e_] := -(p-1)/p^e; a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 06 2025 *)
-
PARI
a(n) = denominator(sumdiv(n, d, moebius(n/d)/d)); \\ Michel Marcus, Nov 17 2017
Comments