A295141 Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 8, 22, 57, 142, 348, 847, 2052, 4962, 11988, 28951, 69904, 168774, 407468, 983727, 2374940, 5733626, 13842212, 33418071, 80678377, 194774849, 470228100
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4 a(2) =2*a(1) + a(0) + b(0) = 8 Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295141 *) Table[b[n], {n, 0, 10}]
Formula
a(n+1)/a(n) -> 1 + sqrt(2).
Comments