A295053
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(0) + b(1) + ... + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 10, 24, 52, 101, 186, 329, 568, 962, 1608, 2662, 4377, 7162, 11679, 18999, 30855, 50051, 81124, 131415, 212802, 344505, 557621, 902467, 1460457, 2363322, 3824207, 6187988, 10012686, 16201198, 26214442, 42416233, 68631304, 111048203
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(0) + b(1) = 10
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3;
a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[b[k], {k, 0, n - 1}];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295053 *)
Table[b[n], {n, 0, 10}]
A295142
Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 9, 25, 64, 159, 389, 945, 2289, 5534, 13369, 32285, 77953, 188206, 454381, 1096985, 2648369, 6393742, 15435873, 37265509, 89966913, 217199358, 524365653, 1265930690
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) =2*a(1) + a(0) + b(0) = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295142 *)
Table[b[n], {n, 0, 10}]
A295143
Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 9, 25, 65, 162, 397, 966, 2340, 5658, 13669, 33010, 79704, 192434, 464589, 1121630, 2707868, 6537386, 15782661, 38102730, 91988144, 222079042
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
a(2) =2*a(1) + a(0) + b(1) = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 1];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295143 *)
Table[b[n], {n, 0, 10}]
A295144
Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 11, 30, 77, 191, 467, 1134, 2745, 6636, 16030, 38710, 93465, 225656, 544794, 1315262, 3175337, 7665956, 18507270, 44680518, 107868329, 260417200, 628702754
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) =2*a(1) + a(0) + b(1) = 11
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 1];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295144 *)
Table[b[n], {n, 0, 10}]
Showing 1-4 of 4 results.
Comments