cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A295141 Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 8, 22, 57, 142, 348, 847, 2052, 4962, 11988, 28951, 69904, 168774, 407468, 983727, 2374940, 5733626, 13842212, 33418071, 80678377, 194774849, 470228100
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
a(2) =2*a(1) + a(0) + b(0) = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295141 *)
    Table[b[n], {n, 0, 10}]

Formula

a(n+1)/a(n) -> 1 + sqrt(2).

A295142 Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 9, 25, 64, 159, 389, 945, 2289, 5534, 13369, 32285, 77953, 188206, 454381, 1096985, 2648369, 6393742, 15435873, 37265509, 89966913, 217199358, 524365653, 1265930690
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) =2*a(1) + a(0) + b(0) = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
    a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295142 *)
    Table[b[n], {n, 0, 10}]

Formula

a(n+1)/a(n) -> 1 + sqrt(2).

A295143 Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 9, 25, 65, 162, 397, 966, 2340, 5658, 13669, 33010, 79704, 192434, 464589, 1121630, 2707868, 6537386, 15782661, 38102730, 91988144, 222079042
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
a(2) =2*a(1) + a(0) + b(1) = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 1];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295143 *)
    Table[b[n], {n, 0, 10}]

Formula

a(n+1)/a(n) -> 1 + sqrt(2).

A295144 Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 11, 30, 77, 191, 467, 1134, 2745, 6636, 16030, 38710, 93465, 225656, 544794, 1315262, 3175337, 7665956, 18507270, 44680518, 107868329, 260417200, 628702754
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) =2*a(1) + a(0) + b(1) = 11
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
    a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 1];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295144 *)
    Table[b[n], {n, 0, 10}]

Formula

a(n+1)/a(n) -> 1 + sqrt(2).

A295145 Solution of the complementary equation a(n) = a(n-1) + 2*a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 7, 15, 34, 70, 146, 295, 597, 1198, 2404, 4813, 9635, 19277, 38564, 77136, 154283, 308575, 617162, 1234334, 2468681, 4937373, 9874760, 19749532, 39499079, 78998171, 157996358
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
a(2) = a(1) + 2*a(0) + b(0) = 7
Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[ n - 1] + 2 a[n - 2] + b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295145 *)
    Table[b[n], {n, 0, 10}]

Formula

a(n+1)/a(n) -> 2.

A295146 Solution of the complementary equation a(n) = a(n-1) + 2*a(n-2) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 7, 17, 36, 76, 156, 317, 639, 1284, 2574, 5155, 10317, 20642, 41292, 82594, 165197, 330405, 660820, 1321652, 2643315, 5286643, 10573298, 21146610, 42293233, 84586481, 169172976
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) = a(1) + 2*a(0) + b(0) = 7
Complement: (b(n)) = (2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
    a[n_] := a[n] = a[ n - 1] + 2 a[n - 2] + b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295146 *)
    Table[b[n], {n, 0, 10}]

Formula

a(n+1)/a(n) -> 2.

A295147 Solution of the complementary equation a(n) = a(n-1) + 2*a(n-2) + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 8, 17, 39, 80, 167, 337, 682, 1368, 2745, 5495, 11000, 22006, 44024, 88055, 176123, 352254, 704522, 1409053, 2818121, 5636252, 11272520, 22545051, 45090119, 90180250, 180360518
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
a(2) = a(1) + 2*a(0) + b(1) = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[ n - 1] + 2 a[n - 2] + b[n - 1];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295147 *)
    Table[b[n], {n, 0, 10}]

Formula

a(n+1)/a(n) -> 2.

A295148 Solution of the complementary equation a(n) = a(n-1) + 2*a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 9, 20, 44, 91, 187, 379, 764, 1534, 3075, 6157, 12322, 24652, 49313, 98635, 197280, 394571, 789153, 1578318, 3156648, 6313309, 12626631, 25253276, 50506566, 101013147, 202026309
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) = a(1) + 2*a(0) + b(1) = 9
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[ n - 1] + 2 a[n - 2] + b[n - 1];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295148 *)
    Table[b[n], {n, 0, 10}]

Formula

a(n+1)/a(n) -> 2.

A295064 Solution of the complementary equation a(n) = 8*a(n-3) + b(n-1), where a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 5, 14, 31, 48, 121, 258, 395, 980, 2077, 3175, 7856, 16633, 25418, 62867, 133084, 203365, 502958, 1064695, 1626944, 4023689, 8517586, 13015579, 32189540, 68140717, 104124662
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.
The sequence a(n+1)/a(n) appears to have three convergent subsequences, with limits 1.52..., 2.11..., 2.47...

Examples

			a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6
a(3)  = 8*a(0) + b(2) = 14
Complement: (b(n)) = (2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
		

Crossrefs

Cf. A295053.

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2;
    a[n_] := a[n] = 8 a[n - 3] + b[n - 1];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295064 *)
    Table[b[n], {n, 0, 10}]

A295066 Solution of the complementary equation a(n) = 2*a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 6, 11, 19, 30, 47, 70, 106, 153, 226, 321, 468, 659, 954, 1338, 1929, 2698, 3881, 5420, 7787, 10866, 15601, 21760, 31231, 43551, 62494, 87135, 125022, 174305, 250080, 348647, 500198, 697333, 1000436, 1394707, 2000914, 2789457, 4001872, 5578959, 8003790
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.
The sequence a(n+1)/a(n) appears to have two convergent subsequences, with limits 1.43..., 1.39... .

Examples

			a(0) = 1, a(1) = 3, a(2) = 2, b(0) = 2, b(1) = 4,
a(2) = 2*a(0) + b(1) = 6
Complement: (b(n)) = (2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = 2 a[n - 2] + b[n - 1];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295066 *)
    Table[b[n], {n, 0, 10}]
Showing 1-10 of 33 results. Next