A295141
Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 8, 22, 57, 142, 348, 847, 2052, 4962, 11988, 28951, 69904, 168774, 407468, 983727, 2374940, 5733626, 13842212, 33418071, 80678377, 194774849, 470228100
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
a(2) =2*a(1) + a(0) + b(0) = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295141 *)
Table[b[n], {n, 0, 10}]
A295142
Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 9, 25, 64, 159, 389, 945, 2289, 5534, 13369, 32285, 77953, 188206, 454381, 1096985, 2648369, 6393742, 15435873, 37265509, 89966913, 217199358, 524365653, 1265930690
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) =2*a(1) + a(0) + b(0) = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295142 *)
Table[b[n], {n, 0, 10}]
A295143
Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 9, 25, 65, 162, 397, 966, 2340, 5658, 13669, 33010, 79704, 192434, 464589, 1121630, 2707868, 6537386, 15782661, 38102730, 91988144, 222079042
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
a(2) =2*a(1) + a(0) + b(1) = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 1];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295143 *)
Table[b[n], {n, 0, 10}]
A295144
Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 11, 30, 77, 191, 467, 1134, 2745, 6636, 16030, 38710, 93465, 225656, 544794, 1315262, 3175337, 7665956, 18507270, 44680518, 107868329, 260417200, 628702754
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) =2*a(1) + a(0) + b(1) = 11
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 1];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295144 *)
Table[b[n], {n, 0, 10}]
A295145
Solution of the complementary equation a(n) = a(n-1) + 2*a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 7, 15, 34, 70, 146, 295, 597, 1198, 2404, 4813, 9635, 19277, 38564, 77136, 154283, 308575, 617162, 1234334, 2468681, 4937373, 9874760, 19749532, 39499079, 78998171, 157996358
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
a(2) = a(1) + 2*a(0) + b(0) = 7
Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = a[ n - 1] + 2 a[n - 2] + b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295145 *)
Table[b[n], {n, 0, 10}]
A295146
Solution of the complementary equation a(n) = a(n-1) + 2*a(n-2) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 7, 17, 36, 76, 156, 317, 639, 1284, 2574, 5155, 10317, 20642, 41292, 82594, 165197, 330405, 660820, 1321652, 2643315, 5286643, 10573298, 21146610, 42293233, 84586481, 169172976
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) = a(1) + 2*a(0) + b(0) = 7
Complement: (b(n)) = (2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[ n - 1] + 2 a[n - 2] + b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295146 *)
Table[b[n], {n, 0, 10}]
A295147
Solution of the complementary equation a(n) = a(n-1) + 2*a(n-2) + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 8, 17, 39, 80, 167, 337, 682, 1368, 2745, 5495, 11000, 22006, 44024, 88055, 176123, 352254, 704522, 1409053, 2818121, 5636252, 11272520, 22545051, 45090119, 90180250, 180360518
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
a(2) = a(1) + 2*a(0) + b(1) = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = a[ n - 1] + 2 a[n - 2] + b[n - 1];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295147 *)
Table[b[n], {n, 0, 10}]
A295148
Solution of the complementary equation a(n) = a(n-1) + 2*a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 9, 20, 44, 91, 187, 379, 764, 1534, 3075, 6157, 12322, 24652, 49313, 98635, 197280, 394571, 789153, 1578318, 3156648, 6313309, 12626631, 25253276, 50506566, 101013147, 202026309
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) = a(1) + 2*a(0) + b(1) = 9
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = a[ n - 1] + 2 a[n - 2] + b[n - 1];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295148 *)
Table[b[n], {n, 0, 10}]
A295064
Solution of the complementary equation a(n) = 8*a(n-3) + b(n-1), where a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 5, 14, 31, 48, 121, 258, 395, 980, 2077, 3175, 7856, 16633, 25418, 62867, 133084, 203365, 502958, 1064695, 1626944, 4023689, 8517586, 13015579, 32189540, 68140717, 104124662
Offset: 0
a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6
a(3) = 8*a(0) + b(2) = 14
Complement: (b(n)) = (2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2;
a[n_] := a[n] = 8 a[n - 3] + b[n - 1];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295064 *)
Table[b[n], {n, 0, 10}]
A295066
Solution of the complementary equation a(n) = 2*a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 6, 11, 19, 30, 47, 70, 106, 153, 226, 321, 468, 659, 954, 1338, 1929, 2698, 3881, 5420, 7787, 10866, 15601, 21760, 31231, 43551, 62494, 87135, 125022, 174305, 250080, 348647, 500198, 697333, 1000436, 1394707, 2000914, 2789457, 4001872, 5578959, 8003790
Offset: 0
a(0) = 1, a(1) = 3, a(2) = 2, b(0) = 2, b(1) = 4,
a(2) = 2*a(0) + b(1) = 6
Complement: (b(n)) = (2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = 2 a[n - 2] + b[n - 1];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295066 *)
Table[b[n], {n, 0, 10}]
Showing 1-10 of 33 results.
Comments