cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A295053 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(0) + b(1) + ... + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 10, 24, 52, 101, 186, 329, 568, 962, 1608, 2662, 4377, 7162, 11679, 18999, 30855, 50051, 81124, 131415, 212802, 344505, 557621, 902467, 1460457, 2363322, 3824207, 6187988, 10012686, 16201198, 26214442, 42416233, 68631304, 111048203
Offset: 0

Views

Author

Clark Kimberling, Nov 18 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. Guide to related sequencres:
A295053: a(n) = a(n-1) + a(n-2) + b(0) + b(1) + ... + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3
A295054: a(n) = a(n-1) + a(n-2) + b(1) + b(2) + ... + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3
A295055: a(n) = a(n-2) + b(1) + b(2) + ... + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3
A295056: a(n) = 2*a(n-1) + b(n-1), a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3
A295057: a(n) = 2*a(n-1) + b(n-1), a(0) = 2, a(1) = 5, b(0) = 1
A295058: a(n) = 2*a(n-1) - b(n-1), a(0) = 3, a(1) = 5, b(0) = 1
A295059: a(n) = 2*a(n-1) + b(n-2), a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3
A295060: a(n) = 2*a(n-1) - b(n-2), a(0) = 3, a(1) = 5, b(0) = 1, b(1) = 2
A295061: a(n) = 4*a(n-1) + b(n-1), a(0) = 1, a(1) = 3, b(0) = 2
A295062: a(n) = 4*a(n-2) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
A295063: a(n) = 4*a(n-2) + b(n-1) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2
A295064: a(n) = 8*a(n-3) + b(n-1), a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2
A295065: a(n) = 8*a(n-3) + b(n-2), a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2
A295066: a(n) = 2*a(n-2) + b(n-1), a(0) = 1, a(1) = 3, b(0) = 2
A295067: a(n) = 2*a(n-2) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2
A295068: a(n) = 2*a(n-2) - b(n-1) + n, a(0) = 3, a(1) = 4, b(0) = 1
A295069: a(n) = 2*a(n-2) - b(n-2) + n, a(0) = 3, a(1) = 4, b(0) = 1
A295070: a(n) = a(n-2) + b(n-1) + b(n-2), a(0) = 3, a(1) = 2, b(0) = 3
A295133: a(n) = 3*a(n-1) + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3
A295134: a(n) = 3*a(n-1) + b(n-1) - 1, a(0) = 1, a(1) = 2, b(0) = 3
A295135: a(n) = 3*a(n-1) + b(n-1) - 2, a(0) = 1, a(1) = 2, b(0) = 3
A295136: a(n) = 3*a(n-1) + b(n-1) - 3, a(0) = 1, a(1) = 2, b(0) = 3
A295137: a(n) = 3*a(n-1) + b(n-1) - n, a(0) = 1, a(1) = 2, b(0) = 3
A295138: a(n) = 3*a(n-2) + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3
A295139: a(n) = 3*a(n-1) + b(n-2), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
A295140: a(n) = 3*a(n-1) - b(n-2) + 4, a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
A295141: a(n) = 2*a(n-1) + a(n-2) + b(n-2), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
A295142: a(n) = 2*a(n-1) + a(n-2) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
A295143: a(n) = 2*a(n-1) + a(n-1) + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
A295144: a(n) = 2*a(n-1) + a(n-2) + b(n-1), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
A295145: a(n) = a(n-1) + 2*a(n-2) + b(n-2), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
A295146: a(n) = a(n-1) + 2*a(n-2) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
A295147: a(n) = a(n-1) + 2*a(n-2) + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
A295148: a(n) = a(n-1) + 2*a(n-2) + b(n-1), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4

Examples

			a(0) = 1, a(1) = 2, b(0) = 3
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(0) + b(1) = 10
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...)
		

Crossrefs

Cf. A294860.

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[b[k], {k, 0, n - 1}];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295053 *)
    Table[b[n], {n, 0, 10}]

A295145 Solution of the complementary equation a(n) = a(n-1) + 2*a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 7, 15, 34, 70, 146, 295, 597, 1198, 2404, 4813, 9635, 19277, 38564, 77136, 154283, 308575, 617162, 1234334, 2468681, 4937373, 9874760, 19749532, 39499079, 78998171, 157996358
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
a(2) = a(1) + 2*a(0) + b(0) = 7
Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[ n - 1] + 2 a[n - 2] + b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295145 *)
    Table[b[n], {n, 0, 10}]

Formula

a(n+1)/a(n) -> 2.

A295147 Solution of the complementary equation a(n) = a(n-1) + 2*a(n-2) + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 8, 17, 39, 80, 167, 337, 682, 1368, 2745, 5495, 11000, 22006, 44024, 88055, 176123, 352254, 704522, 1409053, 2818121, 5636252, 11272520, 22545051, 45090119, 90180250, 180360518
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
a(2) = a(1) + 2*a(0) + b(1) = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[ n - 1] + 2 a[n - 2] + b[n - 1];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295147 *)
    Table[b[n], {n, 0, 10}]

Formula

a(n+1)/a(n) -> 2.

A295148 Solution of the complementary equation a(n) = a(n-1) + 2*a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 9, 20, 44, 91, 187, 379, 764, 1534, 3075, 6157, 12322, 24652, 49313, 98635, 197280, 394571, 789153, 1578318, 3156648, 6313309, 12626631, 25253276, 50506566, 101013147, 202026309
Offset: 0

Views

Author

Clark Kimberling, Nov 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) = a(1) + 2*a(0) + b(1) = 9
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[ n - 1] + 2 a[n - 2] + b[n - 1];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A295148 *)
    Table[b[n], {n, 0, 10}]

Formula

a(n+1)/a(n) -> 2.
Showing 1-4 of 4 results.