A295159 Smallest number with exactly n representations as a sum of five nonnegative squares.
0, 4, 13, 20, 29, 37, 50, 52, 61, 74, 77, 85, 91, 101, 106, 118, 125, 131, 133, 139, 162, 157, 154, 166, 178, 194, 187, 205, 203, 202, 227, 211, 226, 235, 234, 269, 251, 275, 250, 266, 291, 274, 259, 283, 301, 325, 306, 298, 326, 334, 347, 322, 362, 447, 331
Offset: 1
Keywords
References
- E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..447 (first 200 terms from Robert Price)
- D. H. Lehmer, On the Partition of Numbers into Squares, The American Mathematical Monthly, Vol. 55, No. 8, October 1948, pp. 476-481.
Programs
-
Maple
N:= 1000: # to get a(1)...a(n) where a(n+1) is the first term > N V:= Array(0..N): for x[1] from 0 to floor(sqrt(N/5)) do for x[2] from x[1] while x[1]^2 + 4*x[2]^2 <= N do for x[3] from x[2] while x[1]^2 + x[2]^2 + 3*x[3]^2 <= N do for x[4] from x[3] while x[1]^2 + x[2]^2 + x[3]^2 + 2*x[4]^2 <= N do for x[5] from x[4] while x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2 + x[5]^2 <= N do t:= x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2 + x[5]^2; V[t]:= V[t]+1; od od od od od: A:= Vector(max(V),-1): for i from 0 to N do if A[V[i]]=-1 then A[V[i]]:= i fi od: T:= select(t -> A[t]=-1, [$1..max(V)]): if T = [] then nmax:= max(V) else nmax:= T[1]-1 fi: convert(A[1..nmax],list); # Robert Israel, Nov 15 2017
Formula
A000174(a(n))=n. - Robert Israel, Nov 15 2017
Comments