cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295188 Decimal expansion of phi^3 * exp(1 - 1/phi), where phi is the golden ratio.

Original entry on oeis.org

6, 2, 0, 6, 5, 2, 7, 0, 3, 8, 3, 9, 7, 1, 6, 3, 7, 3, 1, 0, 0, 0, 7, 4, 0, 5, 3, 2, 1, 8, 6, 5, 8, 0, 5, 8, 5, 2, 7, 8, 0, 5, 2, 8, 7, 0, 8, 4, 7, 9, 6, 2, 0, 2, 2, 9, 2, 6, 0, 7, 5, 3, 9, 6, 8, 7, 9, 0, 5, 8, 4, 9, 3, 7, 5, 6, 1, 4, 1, 8, 4, 4, 4, 3, 5, 6, 3, 1, 1, 2, 2, 6, 1, 0, 2, 3, 0, 5, 0, 6, 3, 7, 0, 2, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 16 2017

Keywords

Examples

			6.206527038397163731000740532186580585278052870847962022926...
		

Crossrefs

Programs

  • Maple
    evalf(((1+sqrt(5))/2)^3 * exp(1 - 2/(1+sqrt(5))), 120);
  • Mathematica
    RealDigits[GoldenRatio^3 * Exp[1 - 1/GoldenRatio], 10, 110][[1]]
  • PARI
    phi=(sqrt(5)+1)/2; phi^3*exp(2-phi) \\ Charles R Greathouse IV, Nov 21 2024

Formula

Equals ((1+sqrt(5))/2)^3 * exp(1 - 2/(1+sqrt(5))).
Equals limit n->infinity (A066399(n)/n!)^(1/n).
Equals limit n->infinity (A239761(n)/n!)^(1/n).
Equals limit n->infinity (A295183(n)/n!)^(1/n).