cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295198 Number of noncrossing partitions up to rotation of an n-set without singleton blocks.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 6, 15, 28, 67, 145, 368, 870, 2211, 5549, 14290, 36824, 96347, 252927, 670142, 1783770, 4777951, 12855392, 34756783, 94345664, 257114389, 703150507, 1929404736, 5310364234, 14658134277, 40569137070, 112566363319, 313074271844, 872677323283
Offset: 0

Views

Author

Andrew Howroyd, Nov 16 2017

Keywords

Crossrefs

Column k=0 of A211357.
Cf. A005043 (noncrossing partitions of an n-set without singleton blocks).
Cf. A002426.

Programs

  • Mathematica
    b[0] = 1; b[1] = 0; b[n_] := b[n] = (n-1)*(2*b[n-1] + 3*b[n-2])/(n+1);
    a[0] = 1; a[n_] := (b[n] + Sum[EulerPhi[n/d]*Coefficient[(1 + x + x^2)^d, x, d], {d, Most @ Divisors[n]}])/n;
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A005043.
    b(n) = {polcoeff(serreverse((x - x^3) / (1 + x^3) + x * O(x*x^n)), n+1)}
    a(n) = {if(n<1, n==0, (b(n) + sumdiv(n,d, if(d
    				

Formula

a(n) = (1/n) * (A005043(n) - A002426(n) + Sum_{d|n} phi(n/d) * A002426(d)).