A295198 Number of noncrossing partitions up to rotation of an n-set without singleton blocks.
1, 0, 1, 1, 2, 2, 5, 6, 15, 28, 67, 145, 368, 870, 2211, 5549, 14290, 36824, 96347, 252927, 670142, 1783770, 4777951, 12855392, 34756783, 94345664, 257114389, 703150507, 1929404736, 5310364234, 14658134277, 40569137070, 112566363319, 313074271844, 872677323283
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
b[0] = 1; b[1] = 0; b[n_] := b[n] = (n-1)*(2*b[n-1] + 3*b[n-2])/(n+1); a[0] = 1; a[n_] := (b[n] + Sum[EulerPhi[n/d]*Coefficient[(1 + x + x^2)^d, x, d], {d, Most @ Divisors[n]}])/n; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
-
PARI
\\ here b(n) is A005043. b(n) = {polcoeff(serreverse((x - x^3) / (1 + x^3) + x * O(x*x^n)), n+1)} a(n) = {if(n<1, n==0, (b(n) + sumdiv(n,d, if(d