A295228 a(n) = sum_{k=0,...,[n/2]} |s(n-k,k)|^3, s = A048994, Stirling numbers of the first kind.
1, 0, 1, 1, 9, 243, 15156, 1853216, 393861700, 133524487369, 67784261131182, 49102947079265422, 48868239988727255585, 64803779202807835851565, 111657015638972745549794074, 244745390650212498564219429909, 670332605628298040569504378787338
Offset: 0
Keywords
Links
- Edyta Hetmaniok, Barbara Smoleń, Roman Wituła, The Stirling triangles, Proceedings of the Symposium for Young Scientists in Technology, Engineering and Mathematics (SYSTEM 2017), Kaunas, Lithuania, April 28, 2017, p. 35-41.
Programs
-
Mathematica
Abs[Table[Sum[StirlingS1[n-k,k]^3,{k,0,Floor[n/2]}],{n,0,20}]] (* Harvey P. Dale, Apr 03 2021 *)