A295232 Denominator of (-1)^(n+1) * (2*n)! * (2^(2*n)+1)/(B_{2*n} * 2^(4*n-1)), where B_{n} is the Bernoulli number.
1, 2, 8, 64, 128, 1024, 2830336, 32768, 118521856, 11499470848, 183092903936, 651652235264, 3965531409350656, 88306004000768, 1821484971735384064, 7400951301593676906496, 16555640873195841519616, 2604961188466481168384
Offset: 0
Examples
Zeta(2) = Pi^2/6 > 1 + 1/2^2, so Pi^2 > 15/2. Zeta(4) = Pi^4/90 > 1 + 1/2^4, so Pi^4 > 765/8. Zeta(6) = Pi^6/945 > 1 + 1/2^6, so Pi^6 > 61425/64.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..275
Programs
-
PARI
{a(n) = denominator((-1)^(n+1)*(2*n)!*(2^(2*n)+1)/(bernfrac(2*n)*2^(4*n-1)))}
Comments