cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295240 Expansion of e.g.f. 1/(1 - x*exp(x)/(1 - 2*x*exp(x)/(1 - 3*x*exp(x)/(1 - 4*x*exp(x)/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 1, 8, 129, 3748, 172385, 11541246, 1060864189, 128254619480, 19735654508577, 3766841223919930, 873355411013249021, 241783431463815426516, 78781867440446089479937, 29844928122224237593463270, 13007143530120743289176560125, 6462200434400107274026753685296
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16; CoefficientList[Series[1/(1 + ContinuedFractionK[-k x Exp[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) ~ sqrt(Pi) * 2^(n+1) * n^(2*n + 1/2) / exp(2*n - 1/2). - Vaclav Kotesovec, Aug 09 2021

A295242 Expansion of e.g.f. 1/(1 - x*exp(x)/(1 - 2*x*exp(2*x)/(1 - 3*x*exp(3*x)/(1 - 4*x*exp(4*x)/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 1, 8, 141, 4588, 238785, 18187146, 1907650213, 263668859560, 46443551748129, 10155810113182990, 2699369066774377701, 857103398097311042316, 320421972956640538172449, 139308015910536411839444194, 69693570411751759009119119685, 39753354051615620993914808710096
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16; CoefficientList[Series[1/(1 + ContinuedFractionK[-k x Exp[k x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) ~ c * d^n * n^(2*n + 1/2) / exp(2*n), where d = 2.299007884747807311341155634117203393915283915595348... and c = 3.800670014949659244559370644121796775146171755... - Vaclav Kotesovec, Aug 09 2021
Showing 1-2 of 2 results.