A343257 Triangle read by rows: T(n,k) is the number of n+2-sided polygons whose points lie on a circle and with the property that one makes k turns on itself, always in the same direction (right or left) while following its edges, 1 <= k <= ceiling(n/2).
1, 1, 1, 1, 1, 8, 1, 29, 1, 1, 80, 47, 1, 193, 513, 1, 1, 432, 3338, 244, 1, 925, 16633, 7305, 1, 1, 1928, 70713, 103616, 1186, 1, 3953, 271441, 990289, 92145, 1, 1, 8024, 972548, 7438204, 2717321, 5536, 1, 16189, 3321009, 47629761, 47637225, 1076409, 1
Offset: 1
Examples
Triangle begins: 1; 1; 1, 1; 1, 8; 1, 29, 1; 1, 80, 47; 1, 193, 513, 1;
Links
- Ludovic Schwob, Illustration of T(6,k), 1<=k<=3
- Wikipedia, Turning number
Programs
-
PARI
B(n,m,x)={ local(Cache=Map()); my(recurse(k,p,q,b) = my(hk=[k,p,q,b], z); if(!mapisdefined(Cache, hk, &z), z = if(k==0, q>p && q>m, sum(j=1, n-(q-p)%n, my(r=(q+j)%n); if(!bittest(b,r), if(r
Andrew Howroyd, May 15 2021
Formula
Extensions
a(31)-a(49) from Andrew Howroyd, May 15 2021
Comments