A295279 Number of strict tree-factorizations of n.
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 10, 1, 2, 2, 4, 1, 8, 1, 6, 2, 2, 2, 12, 1, 2, 2, 10, 1, 8, 1, 4, 4, 2, 1, 26, 1, 4, 2, 4, 1, 10, 2, 10, 2, 2, 1, 28, 1, 2, 4, 12, 2, 8, 1, 4, 2, 8, 1, 44, 1, 2, 4, 4, 2, 8, 1, 26, 3, 2, 1
Offset: 1
Keywords
Examples
The a(30) = 8 strict tree-factorizations are: 30, (2*3*5), (2*15), (2*(3*5)), (3*10), (3*(2*5)), (5*6), (5*(2*3)). The a(36) = 12 strict tree-factorizations are: 36, (2*3*6), (2*3*(2*3)), (2*18), (2*(2*9)), (2*(3*6)), (2*(3*(2*3))), (3*12), (3*(2*6)), (3*(2*(2*3))), (3*(3*4)), (4*9).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]]; sft[n_]:=1+Total[Function[fac,Times@@sft/@fac]/@Select[sfs[n],Length[#]>1&]]; Array[sft,100]
-
PARI
seq(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, v[j]+=w[k]*v[j/k])); w} \\ Andrew Howroyd, Nov 18 2018
Comments