cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295279 Number of strict tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 10, 1, 2, 2, 4, 1, 8, 1, 6, 2, 2, 2, 12, 1, 2, 2, 10, 1, 8, 1, 4, 4, 2, 1, 26, 1, 4, 2, 4, 1, 10, 2, 10, 2, 2, 1, 28, 1, 2, 4, 12, 2, 8, 1, 4, 2, 8, 1, 44, 1, 2, 4, 4, 2, 8, 1, 26, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2017

Keywords

Comments

A strict tree-factorization of n is either (case 1) the number n itself or (case 2) a set of two or more strict tree-factorizations, one of each factor in a factorization of n into distinct factors greater than one.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(30) = 8 strict tree-factorizations are: 30, (2*3*5), (2*15), (2*(3*5)), (3*10), (3*(2*5)), (5*6), (5*(2*3)).
The a(36) = 12 strict tree-factorizations are: 36, (2*3*6), (2*3*(2*3)), (2*18), (2*(2*9)), (2*(3*6)), (2*(3*(2*3))), (3*12), (3*(2*6)), (3*(2*(2*3))), (3*(3*4)), (4*9).
		

Crossrefs

Programs

  • Mathematica
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    sft[n_]:=1+Total[Function[fac,Times@@sft/@fac]/@Select[sfs[n],Length[#]>1&]];
    Array[sft,100]
  • PARI
    seq(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, v[j]+=w[k]*v[j/k])); w} \\ Andrew Howroyd, Nov 18 2018

Formula

a(product of n distinct primes) = A005804(n).
a(prime^n) = A273873(n).
Dirichlet g.f.: (Zeta(s) + Product_{n >= 2}(1 + a(n)/n^s))/2.