A308811 Numbers k such that the binary plot of the list of divisors of k has reflection symmetry.
1, 2, 3, 4, 8, 10, 15, 16, 32, 64, 128, 136, 170, 255, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 32896, 34952, 43690, 65535, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728
Offset: 1
Examples
Regarding 170: - the divisors of 170 are: 1, 2, 5, 10, 17, 34, 85, 170, - in binary: "1", "10", "101", "1010", "10001", "100010", "1010101", "10101010", - the corresponding binary plot is: . 1 . # . 1 0 . # . 1 0 1 . # # . 1 0 1 0 . # # 1 0 0 0 1 # . # 1 0 0 0 1 0 # . # 1 0 1 0 1 0 1 # # # . # 1 0 1 0 1 0 1 0 # # # # . . . . . - this binary plot has reflection symmetry, - hence 170 belongs to this sequence.
Links
- Rémy Sigrist, Binary plot of the first 48 terms
Programs
-
PARI
is(n) = { my (d=Vecrev(divisors(n))); if (#binary(d[1])==#d, for (b=0, #d-1, my (t=0); for (i=1, #d, if (bittest(d[i], b), t+=2^(i-1))); if (t!=d[b+1], return (0))); return (1), return (0)) }
Formula
A295368(a(n)) = a(n).
Comments