cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295404 G.f. A(x) satisfies: A(x) = A(x)^2 - x*A(x)^3 + x^2.

Original entry on oeis.org

1, 1, 1, 4, 10, 32, 95, 306, 978, 3235, 10767, 36470, 124514, 429648, 1492944, 5225700, 18396350, 65115694, 231555165, 826956617, 2964543205, 10664540170, 38484972969, 139281469165, 505408580484, 1838442927937, 6702466323520, 24486411113076, 89630823136513, 328680670354328, 1207323483992684, 4441801238353311, 16365832987077134, 60384021404260146, 223087697417538491
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2017

Keywords

Examples

			G.f.: A(x) =  1 + x + x^2 + 4*x^3 + 10*x^4 + 32*x^5 + 95*x^6 + 306*x^7 + 978*x^8 + 3235*x^9 + 10767*x^10 + 36470*x^11 + 124514*x^12 + 429648*x^13 + 1492944*x^14 + 5225700*x^15 + 18396350*x^16 + 65115694*x^17 + 231555165*x^18 + 826956617*x^19 + 2964543205*x^20 +...
such that A(x) = A(x)^2 - x*A(x)^3 + x^2.
RELATED SERIES.
1/A(x) = 1 - x - 3*x^3 - 3*x^4 - 16*x^5 - 32*x^6 - 121*x^7 - 329*x^8 - 1138*x^9 - 3546*x^10 - 12097*x^11 - 40112*x^12 +...
A(x)^2 = 1 + 2*x + 3*x^2 + 10*x^3 + 29*x^4 + 92*x^5 + 290*x^6 + 946*x^7 + 3114*x^8 + 10438*x^9 + 35332*x^10 + 120968*x^11 + 417551*x^12 +...
A(x)^3 = 1 + 3*x + 6*x^2 + 19*x^3 + 60*x^4 + 195*x^5 + 640*x^6 + 2136*x^7 + 7203*x^8 + 24565*x^9 + 84498*x^10 + 293037*x^11 + 1023184*x^12 +...
where A(x) = 1 + x*A(x)^2 - x^2/A(x).
Series_Reversion(x*A(x)) = x - x^2 + x^3 - 4*x^4 + 10*x^5 - 32*x^6 + 107*x^7 - 360*x^8 + 1270*x^9 - 4544*x^10 + 16537*x^11 - 61092*x^12 + 228084*x^13 - 860056*x^14 + 3269994*x^15 +...+ (-1)^(n-1)*A137954(n-1)*x^n +...
		

Crossrefs

Cf. A137954.

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A = 1 + x*A^2 - x^2/A  +x*O(x^n)); polcoeff(G=A, n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 - x^2/A(x).
a(n) ~ sqrt((s^3 - 2*r)/(Pi*(3*r*s - 1))) / (2*n^(3/2)*r^(n - 1/2)), where r = 0.2590976379022320530812109572925567785373263490686... and s = 1.89364715749587181948481325332597309754099061462... are real roots of the system of equations r^2 + s^2 = s + r*s^3, 1 + 3*r*s^2 = 2*s. - Vaclav Kotesovec, Nov 23 2017