A295421 Decimal expansion of the sum of the reciprocals of the dodecahedral numbers (A006566).
1, 0, 7, 2, 7, 8, 0, 6, 1, 3, 3, 4, 9, 1, 6, 2, 2, 3, 8, 7, 9, 8, 2, 4, 9, 5, 3, 1, 0, 7, 9, 4, 4, 5, 0, 4, 1, 4, 5, 4, 8, 6, 3, 5, 3, 5, 4, 0, 4, 9, 8, 6, 6, 8, 5, 7, 5, 2, 7, 8, 5, 9, 0, 2, 6, 2, 5, 9, 4, 3, 3, 3, 1, 8, 6, 1, 6, 1, 7, 3, 7, 5, 2, 1, 5, 7, 6
Offset: 1
Examples
1.07278061334916223879...
Crossrefs
Programs
-
Mathematica
RealDigits[Sum[2/(n(3n-1)(3n-2)), {n, 1, Infinity}], 10, 100][[1]]
-
PARI
(sqrt(3)*Pi - 3*log(3))/2 \\ Michel Marcus, Nov 23 2017
Formula
Sum_{n>=1} 2/(n(3n-1)(3n-2)) = 1/1 + 1/20 + 1/84 + 1/220 + 1/455 + ... = (sqrt(3)*Pi - 3*log(3))/2.