cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295495 Number of dissections of an n-gon by nonintersecting diagonals into polygons with a prime number of sides counted up to rotations.

Original entry on oeis.org

1, 1, 2, 5, 11, 36, 114, 410, 1458, 5488, 20786, 80770, 317378, 1265139, 5094139, 20718347, 84961256, 351086326, 1460591637, 6113826319, 25733864299, 108867782794, 462707558813, 1974991841442, 8463121111860, 36397780088126, 157066702354947, 679917566925030
Offset: 3

Views

Author

Andrew Howroyd, Nov 22 2017

Keywords

Crossrefs

Programs

  • Mathematica
    DissectionsModCyclic[v_] :=
    Module[{n = Length[v], q, vars, u, p}, q = Table[0, {n}]; q[[1]] = InverseSeries[x - Sum[x^i v[[i]], {i, 3, Length[v]}]/x + O[x]^(n+1)]; For[i = 2, i <= n, i++, q[[i]] = q[[i-1]] q[[1]]]; vars = Variables[q[[1]]]; u[m_, r_] := Normal[(q[[r]] + O[x]^(Quotient[n, m] + 1))] /. Thread[vars -> vars^m]; p = O[x]^n + x u[1, 1] - x^2 + (u[2, 1] - u[1, 2])/2 + Sum[v[[i]] Sum[EulerPhi[d] u[d, i/d]/i, {d, Divisors[i]}], {i, 3, Length[v]}]; Drop[CoefficientList[p, x], 3]];
    DissectionsModCyclic[Boole[PrimeQ[#]]& /@ Range[1, 31]] (* Jean-François Alcover, Sep 26 2019, after Andrew Howroyd *)
  • PARI
    \\ number of dissections into parts defined by set.
    DissectionsModCyclic(v)={my(n=#v);
    my(q=vector(n)); q[1]=serreverse(x-sum(i=3, #v, x^i*v[i])/x + O(x*x^n));
    for(i=2, n, q[i]=q[i-1]*q[1]);
    my(vars=variables(q[1]));
    my(u(m, r)=substvec(q[r]+O(x^(n\m+1)), vars, apply(t->t^m, vars)));
    my(p=O(x*x^n) + x*u(1,1) - x^2 + (u(2,1)-u(1,2))/2 + sum(i=3, #v, my(c=v[i]); if(c,c*sumdiv(i, d, eulerphi(d)*u(d,i/d))/i)));
    vector(n, i, polcoeff(p, i))}
    DissectionsModCyclic(apply(i->isprime(i), [1..30]))