cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A295498 G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 - x^2/A(x)^3.

Original entry on oeis.org

1, 1, 1, 6, 11, 51, 106, 492, 1115, 5317, 12912, 62283, 159146, 767083, 2036260, 9765849, 26735811, 127447531, 358219288, 1696410364, 4879284508, 22946311567, 67362378507, 314520916727, 940422623222, 4359165612216, 13252603911289, 60989336178364, 188258217816004, 860270701616648, 2692815154387672, 12220594038311373, 38750249291035303, 174684318231133053, 560585633201038635
Offset: 0

Views

Author

Paul D. Hanna, Nov 22 2017

Keywords

Comments

Note that G(x) such that G(x) = 1 + x*G(x)^2 - x^2/G(x)^4 has negative coefficients.

Examples

			G.f.: A(x) = 1 + x + x^2 + 6*x^3 + 11*x^4 + 51*x^5 + 106*x^6 + 492*x^7 + 1115*x^8 + 5317*x^9 + 12912*x^10 + 62283*x^11 + 159146*x^12 + 767083*x^13 + 2036260*x^14 + 9765849*x^15 + 26735811*x^16 + 127447531*x^17 + 358219288*x^18 + 1696410364*x^19 + 4879284508*x^20 +...
such that A(x) = 1 + x*A(x)^2 - x^2/A(x)^3.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 3*x^2 + 14*x^3 + 35*x^4 + 136*x^5 + 372*x^6 + 1430*x^7 + 4159*x^8 + 16242*x^9 + 49525*x^10 + 196040*x^11 + 618436*x^12 +...
A(x)^3 = 1 + 3*x + 6*x^2 + 25*x^3 + 75*x^4 + 276*x^5 + 868*x^6 + 3159*x^7 + 10293*x^8 + 37851*x^9 + 127023*x^10 + 472767*x^11 + 1622387*x^12 +...
A(x)^4 = 1 + 4*x + 10*x^2 + 40*x^3 + 135*x^4 + 496*x^5 + 1694*x^6 + 6144*x^7 + 21303*x^8 + 77636*x^9 + 273548*x^10 + 1005368*x^11 + 3591432*x^12 +...
A(x)^5 = 1 + 5*x + 15*x^2 + 60*x^3 + 220*x^4 + 826*x^5 + 2985*x^6 + 11010*x^7 + 39785*x^8 + 146525*x^9 + 532601*x^10 + 1969045*x^11 + 7208040*x^12 +...
where x^2 = A(x)^3 - A(x)^4 + x*A(x)^5.
Let F(x) be the series given by
F(x) = (1/x)*Series_Reversion(x*A(x)) = 1 - x + x^2 - 6*x^3 + 21*x^4 - 86*x^5 + 396*x^6 - 1812*x^7 + 8607*x^8 - 41958*x^9 + 207333*x^10 +...+ (-1)^n*A137966(n)*x^n +...
then F(x) = 1 - x + x^2*F(x)^6.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A = 1 + x*A^2 - x^2/A^3  +x*O(x^n)); polcoeff(G=A, n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f. A(x) satisfies: x^2 = A(x)^3 - A(x)^4 + x*A(x)^5.
a(n) ~ s * sqrt((2*r - s^5) / (Pi*(6*r - s^5))) / (2*n^(3/2)*r^n), where r = 0.2520932825034369933395854430839207204336449133515... and s = 1.957646455287329963796650229699010012363761835805... are real roots of the system of equations 1 + r*s^2 = r^2/s^3 + s, 3*r^2/s^4 + 2*r*s = 1. - Vaclav Kotesovec, Nov 23 2017
Showing 1-1 of 1 results.