A295520 a(n) is the least k >= 0 such that n XOR k is prime (where XOR denotes the bitwise XOR operator).
2, 2, 0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 5, 4, 1, 0, 1, 0, 5, 4, 7, 6, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 7, 6, 1, 0, 3, 2, 3, 2, 1, 0, 1, 0, 3, 2, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 3, 2, 1, 0, 3, 2, 1, 0, 7, 6, 5
Offset: 0
Examples
For n = 44: - 44 XOR 0 = 44 is not prime, - 44 XOR 1 = 45 is not prime, - 44 XOR 2 = 46 is not prime, - 44 XOR 3 = 47 is prime, - hence a(44) = 3.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Rémy Sigrist, Scatterplot of (x, y) such that x XOR y is prime and x, y < 1024
Crossrefs
Cf. A295335.
Programs
-
Maple
f:= proc(n) local k; for k from 0 do if isprime(Bits:-Xor(k,n)) then return k fi od end proc: map(f, [$0..200]); # Robert Israel, Nov 27 2017
-
Mathematica
Table[Block[{k = 0}, While[! PrimeQ@ BitXor[k, n], k++]; k], {n, 0, 104}] (* Michael De Vlieger, Nov 26 2017 *)
-
PARI
a(n) = for (k=0, oo, if (isprime(bitxor(n,k)), return (k)))
-
Python
from itertools import count from sympy import isprime def A295520(n): return next(k for k in count(0) if isprime(n^k)) # Chai Wah Wu, Aug 23 2023
Formula
Empirically, for any k > 1, a(2*k+1) = a(2*k)-1.
Comments