A295793 a(n) is the least k such that A295520(k) = n.
2, 4, 0, 8, 25, 24, 35, 34, 201, 200, 203, 202, 297, 296, 299, 298, 1335, 1334, 1333, 1332, 1331, 1330, 1329, 1328, 3295, 3294, 3293, 3292, 3291, 3290, 3289, 3288, 11749, 11748, 11761, 11760, 11745, 11744, 11765, 11764, 11757, 11756, 19623, 19622, 11753, 11752, 19619, 19618, 25475, 25474, 25473, 25472
Offset: 0
Examples
a(3)=8 because A295520(8)=3 and this is the first appearance of 3 in A295520.
Links
- Robert Israel, Table of n, a(n) for n = 0..175
Crossrefs
Cf. A295520.
Programs
-
Maple
N:= 100: # to get a(0)..a(N) A295520:= proc(n) local k; for k from 0 do if isprime(Bits:-Xor(k,n)) then return k fi od end proc: V:= Array(0..N,-1): count:= 0: for n from 0 while count < N+1 do r:= A295520(n); if r <= N and V[r]=-1 then count:= count+1; V[r]:= n fi od: convert(V,list); # Robert Israel, Nov 27 2017
-
Mathematica
With[{s = Array[Block[{k = 0}, While[! PrimeQ@ BitXor[k, #], k++]; k] &, 10^6]}, FirstPosition[s, #][[1]] /. 1 -> 0 & /@ Take[#, LengthWhile[Differences@ #, # == 1 &]] &@ Union@ s] (* Michael De Vlieger, Nov 27 2017 *)
-
Python
from itertools import count from sympy import isprime def A295793(n): return next(k for k in count(0) if next((m for m in range(n+1) if isprime(k^m)),None)==n) # Chai Wah Wu, Aug 23 2023
Comments