A344259 For any number n with binary expansion (b(1), ..., b(k)), the binary expansion of a(n) is (b(1), ..., b(ceiling(k/2))).
0, 1, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10
Offset: 0
Examples
The first terms, alongside their binary expansion, are: n a(n) bin(n) bin(a(n)) -- ---- ------ --------- 0 0 0 0 1 1 1 1 2 1 10 1 3 1 11 1 4 2 100 10 5 2 101 10 6 3 110 11 7 3 111 11 8 2 1000 10 9 2 1001 10 10 2 1010 10 11 2 1011 10 12 3 1100 11 13 3 1101 11 14 3 1110 11 15 3 1111 11
Links
Programs
-
Mathematica
Array[FromDigits[First@Partition[l=IntegerDigits[#,2],Ceiling[Length@l/2]],2]&,100,0] (* Giorgos Kalogeropoulos, May 14 2021 *)
-
PARI
a(n) = n\2^(#binary(n)\2)
-
Python
def a(n): b = bin(n)[2:]; return int(b[:(len(b)+1)//2], 2) print([a(n) for n in range(85)]) # Michael S. Branicky, May 14 2021
Comments