A295540 Number of ways of writing n as the sum of a lower Wythoff number (A000201) and an upper Wythoff number (A001950), when zero is included in both sequences.
1, 1, 1, 2, 1, 2, 3, 1, 4, 2, 3, 5, 1, 5, 5, 2, 7, 3, 5, 8, 1, 9, 5, 5, 10, 2, 9, 9, 3, 12, 5, 8, 13, 1, 13, 10, 5, 15, 5, 11, 15, 2, 17, 9, 9, 18, 3, 16, 15, 5, 20, 8, 13, 21, 1, 22, 13, 10, 23, 5, 19, 20, 5, 25, 11, 15, 26, 2, 25, 19, 9, 28, 9, 20, 27, 3, 30, 16, 15, 31, 5, 27, 25, 8, 33, 13, 21, 34, 1, 34, 23, 13, 36, 10, 27, 33, 5, 38, 19, 20, 39, 5, 35, 30, 11, 41, 15, 27, 41, 2, 43, 25, 19, 44, 9, 36, 37, 9, 46, 20, 27
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + x^4 + 2*x^5 + 3*x^6 + x^7 + 4*x^8 + 2*x^9 + 3*x^10 + 5*x^11 + x^12 + 5*x^13 + 5*x^14 + 2*x^15 + 7*x^16 + 3*x^17 + 5*x^18 + 8*x^19 + x^20 + 9*x^21 + 5*x^22 + 5*x^23 + 10*x^24 + 2*x^25 + 9*x^26 + 9*x^27 + 3*x^28 + 12*x^29 + 5*x^30 + 8*x^31 + 13*x^32 + x^33 + 13*x^34 + 10*x^35 + 5*x^36 + 15*x^37 + 5*x^38 + 11*x^39 + 15*x^40 + 2*x^41 + 17*x^42 + 9*x^43 + 9*x^44 + 18*x^45 + 3*x^46 + 16*x^47 + 15*x^48 + 5*x^49 + 20*x^50 +...+ a(n)*x^n +... such that A(x) = WL(x) * WU(x) where WL(x) = 1 + x + x^3 + x^4 + x^6 + x^8 + x^9 + x^11 + x^12 + x^14 + x^16 + x^17 + x^19 + x^21 + x^22 + x^24 + x^25 + x^27 + x^29 + x^30 +...+ x^A000201(n) +... WU(x) = 1 + x^2 + x^5 + x^7 + x^10 + x^13 + x^15 + x^18 + x^20 + x^23 + x^26 + x^28 + x^31 + x^34 + x^36 + x^39 + x^41 + x^44 + x^47 + x^49 +...+ x^A001950(n) +... Terms equal 1 only at positions: [0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, ..., Fibonacci(n+1)-1, ...].
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..10000
Programs
-
PARI
{a(n) = my(phi = (1 + sqrt(5))/2, WL=1, WU=1); WL = sum(m=0,floor(n/phi)+1, x^floor(m*phi) +x*O(x^n)); WU = sum(m=0,floor(n/phi^2)+1, x^floor(m*phi^2) +x*O(x^n)); polcoeff(WL*WU,n)} for(n=0,120, print1(a(n),", "))
Formula
G.f.: [ Sum_{n>=0} x^floor(n*phi) ] * [ Sum_{n>=0} x^floor(n*phi^2) ], where phi = (1+sqrt(5))/2.
G.f.: [1 + Sum_{n>=1} x^A000201(n) ] * [1 + Sum_{n>=1} x^A001950(n) ], where A000201 and A001950 are the lower and upper Wythoff sequences, respectively.
a(Fibonacci(n+1)-1) = 1 for n>=1.
a(Fibonacci(n+2)-2) = Fibonacci(n) for n>=1.
Comments