A295554 a(n) is the number of distinct integer-sided triangles inscribed in a circle of radius A009003(n) whose inradius are integers.
1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 5, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 12, 1, 1, 1, 1, 1, 12, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 5, 12, 1, 1, 5, 1, 1
Offset: 1
Keywords
Examples
a(7) = 5 because there exists 5 distinct triangles of integer circumradius R = A009003(7)= 25 with the corresponding integer inradius {4, 6, 8, 10, 12}.
Links
- Felix Huber, Illustration of the term a(7)
- Michel Lagneau, Triangles
- Eric Weisstein's World of Mathematics, Circumradius
- Eric Weisstein's World of Mathematics, Inradius
Programs
-
Mathematica
A009003=Select[Range[200], Length[PowersRepresentations[#^2, 2, 2]] > 1 &];lst= {};Do[R=Part[A009003,n];it=0;Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s (s-a) (s-b) (s-c);If[area2>0&&IntegerQ[Sqrt[area2]]&&R==a*b*c/(4*Sqrt[area2])&&IntegerQ[Sqrt[area2]/s],it=it+1]],{a,2*R},{b,a},{c,b}];AppendTo[lst,it],{n,1,30}];lst
Comments