A295555 Generalized Pascal triangle read by rows: add the four terms that are right above you, three rows back.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 5, 7, 7, 5, 3, 1, 1, 3, 6, 9, 10, 9, 6, 3, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 9, 16, 22, 24, 22, 16, 9, 4, 1, 1, 4, 10, 19, 28, 34, 34, 28, 19, 10, 4, 1, 1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1
Offset: 0
Examples
Triangle begins: 1 1, 1 1, 1, 1 1, 1, 1, 1 1, 2, 2, 2, 1 1, 2, 3, 3, 2, 1 1, 2, 3, 4, 3, 2, 1 1, 3, 5, 7, 7, 5, 3, 1 1, 3, 6, 9, 10, 9, 6, 3, 1 1, 3, 6, 10, 12, 12, 10, 6, 3, 1 ... From _Peter Bala_, Aug 19 2021: (Start) With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins /1 \/1 \/1 \ /1 \ |1 1 ||0 1 ||0 1 | |1 1 | |1 0 1 ||0 1 1 ||0 0 1 | |1 1 1 | |1 0 0 1 ||0 1 0 1 ||0 0 1 1 |... = |1 1 1 1 | |1 0 0 1 1 ||0 1 0 0 1 ||0 0 1 0 1 | |1 2 2 2 1 | |1 0 0 1 0 1 ||0 1 0 0 1 1 ||0 0 1 0 0 1 | |... | |1 0 0 1 0 0 1||0 1 0 0 1 0 1||0 0 1 0 0 1 1| |... ||... ||... | (End)
Links
- Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 141, flattened)
- Wikipedia, Hockey-stick identity.
Programs
-
Maple
T:=proc(n,k) option remember; if n >= 0 and k = 0 then 1 elif n >= 0 and k = n then 1 elif (k < 0 or k > n) then 0 elif n=2 then 1 else T(n-3,k-3)+T(n-3,k-2)+T(n-3,k-1)+T(n-3,k); fi; end; for n from 0 to 14 do lprint([seq(T(n,k),k=0..n)]); od:
-
Mathematica
T[n_, k_] := T[n, k] = Which[ n >= 0 && k == 0, 1, n >= 0 && k == n, 1, k < 0 || k > n, 0, n == 2, 1, True, T[n-3, k-3] + T[n-3, k-2] + T[n-3, k-1] + T[n-3, k]]; Table[T[n, k], {n, 0, 14}, { k, 0, n}] // Flatten (* Jean-François Alcover, Aug 19 2022, after Maple code *)
Formula
T(n,0)=T(n,n)=1, T(n,k)=0 if k<0 or k>n, also T(2,1)=1; thereafter T(n,k) = T(n-3,k-3) + T(n-3,k-2) + T(n-3,k-1) + T(n-3,k).
From Peter Bala, Aug 19 2021: (Start)
T(3*n,k) = T(3*n-2,k) + T(3*n-2,k-2).
T(3*n+1,k) = T(3*n,k) + T(3*n,k-1).
T(3*n+2,k) = T(3*n+1,k-1) + T(3*n,k).
Hockey-stick identities (relate row k entries to entries in row k-1):
T(3*n,k) = T(3*n-1,k-1) + T(3*n-4,k-1) + T(3*n-7,k-1) + ....
T(3*n+1,k) = T(3*n,k-1) + ( T(3*n-1,k-1) + T(3*n-4,k-1) + T(3*n-7,k-1) + ... ).
T(3*n+2,k) = T(3*n+1,k-1) + ( T(3*n-1,k-1) + T(3*n-4,k-1) + T(3*n-7,k-1) + ... ).
Row polynomials:
R(3*n,x) = R(3,x)^n = (1 + x + x^2 + x^3)^n.
R(3*n+1,x) = R(1,x)*R(3,x)^n = (1 + x)*(1 + x + x^2 + x^3)^n.
R(3*n+2,x) = R(2,x)*R(3,x)^n = (1 + x + x^2)*(1 + x + x^2 + x^3)^n. (End)
Comments