A295588 Numbers k such that Bernoulli number B_{k} has denominator 14322.
30, 1770, 3810, 4170, 4470, 4890, 5910, 5970, 6810, 8070, 9210, 10590, 11370, 11670, 12030, 12990, 13470, 13890, 14370, 14970, 15630, 16890, 17070, 17610, 18510, 18570, 19290, 19410, 20190, 20310, 21270, 22710, 24810, 25710, 26310, 27570, 27870, 29010, 29490, 29730
Offset: 1
Examples
Bernoulli B_{30} is 8615841276005/14322, hence 30 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,14322); # Alternative: # according to Robert Israel code in A282773 with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 7, 11, 31}: select(filter, [seq(i, i=1..10^5)]);
Comments