A295594 Numbers k such that Bernoulli number B_{k} has denominator 272118.
90, 14670, 24210, 35010, 40410, 41670, 44910, 46890, 55530, 57870, 60570, 60930, 82710, 83610, 87030, 89730, 98370, 101070, 104670, 106830, 109530, 111330, 113310, 114930, 117090, 117270, 117630, 123570, 128610, 138870, 150030, 152730, 160470, 175590, 178110, 179730
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 272118); # Alternative: # according to Robert Israel code in A282773 with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 7, 11, 19, 31}: select(filter, [seq(i, i=1..10^5)]);
Formula
272118 = 2*3*7*11*19*31.
Bernoulli B_{90} is
1179057279021082799884123351249215083775254949669647116231545215727922535/ 272118 hence 90 is in the sequence.
Comments