cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295594 Numbers k such that Bernoulli number B_{k} has denominator 272118.

Original entry on oeis.org

90, 14670, 24210, 35010, 40410, 41670, 44910, 46890, 55530, 57870, 60570, 60930, 82710, 83610, 87030, 89730, 98370, 101070, 104670, 106830, 109530, 111330, 113310, 114930, 117090, 117270, 117630, 123570, 128610, 138870, 150030, 152730, 160470, 175590, 178110, 179730
Offset: 1

Views

Author

Paolo P. Lava, Nov 24 2017

Keywords

Comments

272118 = 2*3*7*11*19*31.
All terms are multiples of a(1) = 90.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 230759.

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 272118);
    # Alternative: # according to Robert Israel code in A282773
    with(numtheory): filter:= n ->
    select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 7, 11, 19, 31}:
    select(filter, [seq(i, i=1..10^5)]);

Formula

272118 = 2*3*7*11*19*31.
Bernoulli B_{90} is
1179057279021082799884123351249215083775254949669647116231545215727922535/ 272118 hence 90 is in the sequence.