A295595 Numbers k such that Bernoulli number B_{k} has denominator 1919190.
36, 3924, 6012, 7596, 8172, 11412, 12564, 12708, 14004, 15156, 15804, 16164, 19692, 20556, 21564, 22068, 22212, 26388, 27684, 30924, 34812, 35172, 35388, 39492, 41508, 41868, 42732, 43812, 45324, 45972, 46836, 46908, 47052, 49212, 52092, 53388, 53604, 53748, 58932
Offset: 1
Examples
Bernoulli B_{36} is -26315271553053477373/1919190, hence 36 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A282773.
Programs
-
Maple
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,1919190); # Alternative according to Robert Israel's code in A282773: with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 19, 37}: select(filter, [seq(i, i=1..10^5)]);
Comments