A295596 Numbers k such that Bernoulli number B_{k} has denominator 3404310.
84, 168, 16548, 26628, 29316, 38388, 43764, 47964, 53256, 61572, 69132, 71988, 72156, 73668, 87528, 96852, 103908, 109284, 121548, 123144, 124572, 137508, 139188, 142548, 144312, 144564, 146244, 147336, 156828, 163716, 167748, 172452, 174972, 185388, 188076, 190428
Offset: 1
Examples
Bernoulli B_{84} is -2024576195935290360231131160111731009989917391198090877281083932477/3404310 hence 84 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 3404310); # Alternative: # according to Robert Israel code in A282773 with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 29, 43}: select(filter, [seq(i, i=1..10^5)]);
Comments