A295598 Numbers k such that Bernoulli number B_{k} has denominator 56786730.
60, 13620, 21180, 23340, 26940, 31260, 40620, 45420, 49620, 52620, 58020, 59460, 69780, 73020, 74220, 78180, 79140, 83940, 89580, 97260, 97620, 100020, 104460, 111660, 116940, 117060, 119820, 123180, 125340, 127860, 137820, 140460, 142260, 142620, 157980, 162420
Offset: 1
Examples
Bernoulli B_{60} is -1215233140483755572040304994079820246041491/56786730, hence 60 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 56786730); # Alternative: # according to Robert Israel code in A282773 with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 11, 13, 31, 61}: select(filter, [seq(i, i=1..10^5)]);
Comments