A295620 Solution of the complementary equation a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4) + b(n-4), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 3, 4, 12, 20, 49, 85, 177, 304, 578, 979, 1765, 2953, 5150, 8538, 14570, 23997, 40352, 66149, 110094, 179867, 297172, 484313, 795934, 1294823, 2119684, 3443689, 5621258, 9123343, 14860404, 24100573, 39192618, 63526879, 103182816, 167177109, 271286602
Offset: 0
Examples
a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, so that b(4) = 9 (least "new number") a(4) = a(3) + 3*a(2) -2*a(1) - 2*a(0) + b(0) = 12 Complement: (b(n)) = (5, 6, 7, 8, 9, 10, 11, 13, 14, 15, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4; b[0] = 5; b[1] = 6; b[2] = 7; b[3] = 8; a[n_] := a[n] = a[n - 1] + 3*a[n - 2] - 2*a[n - 3] - 2 a[n - 4] + b[n - 4]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; z = 36; Table[a[n], {n, 0, z}] (* A295620 *) Table[b[n], {n, 0, 20}] (*complement *)
Comments