A293411
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4.
Original entry on oeis.org
1, 2, 3, 4, 7, 12, 19, 30, 49, 80, 129, 208, 337, 546, 883, 1428, 2311, 3740, 6051, 9790, 15841, 25632, 41473, 67104, 108577, 175682, 284259, 459940, 744199, 1204140, 1948339, 3152478, 5100817, 8253296, 13354113, 21607408, 34961521, 56568930, 91530451
Offset: 0
-
LinearRecurrence[{1, 0, 1, 1}, {1, 2, 3, 4}, 100]
A295619
a(n) = a(n-1) + 3*a(n-2) - 2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4.
Original entry on oeis.org
1, 2, 3, 4, 7, 9, 16, 21, 37, 50, 87, 121, 208, 297, 505, 738, 1243, 1853, 3096, 4693, 7789, 11970, 19759, 30705, 50464, 79121, 129585, 204610, 334195, 530613, 864808, 1379037, 2243845, 3590114, 5833959, 9358537, 15192496, 24419961, 39612457, 63770274
Offset: 0
-
LinearRecurrence[{1, 3, -2, -2}, {1, 2, 3, 4}, 50]
A295621
Solution of the complementary equation a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4) + b(n-3), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 3, 4, 13, 22, 55, 96, 201, 346, 659, 1117, 2015, 3372, 5882, 9752, 16643, 27411, 46093, 75559, 125754, 205448, 339432, 553177, 909097, 1478897, 2421000, 3933174, 6420218, 10419979, 16972319, 27525507, 44762106, 72554068, 117844772, 190931789, 309833797
Offset: 0
a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, so that
b(4) = 9 (least "new number")
a(4) = a(3) + 3*a(2) -2*a(1) - 2*a(0) + b(1) = 13
Complement: (b(n)) = (5, 6, 7, 8, 9, 10, 11, 12, 14, 15, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4;
b[0] = 5; b[1] = 6; b[2] = 7; b[3] = 8;
a[n_] := a[n] = a[n - 1] + 3*a[n - 2] - 2*a[n - 3] - 2 a[n - 4] + b[n - 3];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
z = 36; Table[a[n], {n, 0, z}] (* A295621 *)
Table[b[n], {n, 0, 20}] (*complement *)
Showing 1-3 of 3 results.
Comments