cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A293411 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4.

Original entry on oeis.org

1, 2, 3, 4, 7, 12, 19, 30, 49, 80, 129, 208, 337, 546, 883, 1428, 2311, 3740, 6051, 9790, 15841, 25632, 41473, 67104, 108577, 175682, 284259, 459940, 744199, 1204140, 1948339, 3152478, 5100817, 8253296, 13354113, 21607408, 34961521, 56568930, 91530451
Offset: 0

Views

Author

Clark Kimberling, Nov 25 2017

Keywords

Comments

a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that this sequence has the growth rate of the Fibonacci numbers (A000045).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 1, 1}, {1, 2, 3, 4}, 100]

Formula

a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4.
G.f.: (1+x+x^2)/((1+x^2)*(1-x-x^2)).
From Greg Dresden, Aug 25 2021: (Start)
a(2*n) = a(2*n - 1) + a(2*n - 2),
a(2*n) = 2*F(n+1)^2 - (-1)^n = A061646(n+1),
a(2*n+1) = 2*F(n+1)*F(n+2) = A079472(n+2), for F(n) the Fibonacci numbers A000045. (End)
a(n) = round (2*A000032(n+2)/5). - R. J. Mathar, Jul 20 2025

A295619 a(n) = a(n-1) + 3*a(n-2) - 2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4.

Original entry on oeis.org

1, 2, 3, 4, 7, 9, 16, 21, 37, 50, 87, 121, 208, 297, 505, 738, 1243, 1853, 3096, 4693, 7789, 11970, 19759, 30705, 50464, 79121, 129585, 204610, 334195, 530613, 864808, 1379037, 2243845, 3590114, 5833959, 9358537, 15192496, 24419961, 39612457, 63770274
Offset: 0

Views

Author

Clark Kimberling, Nov 25 2017

Keywords

Comments

a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 3, -2, -2}, {1, 2, 3, 4}, 50]

Formula

a(n) = a(n-1) + 3*a(n-2) - 2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4.
G.f.: (1 + x - 2 x^2 - 3 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).

A295621 Solution of the complementary equation a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4) + b(n-3), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 3, 4, 13, 22, 55, 96, 201, 346, 659, 1117, 2015, 3372, 5882, 9752, 16643, 27411, 46093, 75559, 125754, 205448, 339432, 553177, 909097, 1478897, 2421000, 3933174, 6420218, 10419979, 16972319, 27525507, 44762106, 72554068, 117844772, 190931789, 309833797
Offset: 0

Views

Author

Clark Kimberling, Nov 25 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values.

Examples

			a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, so that
b(4) = 9 (least "new number")
a(4) = a(3) + 3*a(2) -2*a(1) - 2*a(0) + b(1) = 13
Complement: (b(n)) = (5, 6, 7, 8, 9, 10, 11, 12, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4;
    b[0] = 5; b[1] = 6; b[2] = 7; b[3] = 8;
    a[n_] := a[n] = a[n - 1] + 3*a[n - 2] - 2*a[n - 3] - 2 a[n - 4] + b[n - 3];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    z = 36;  Table[a[n], {n, 0, z}]   (* A295621 *)
    Table[b[n], {n, 0, 20}]  (*complement *)

Extensions

Typo in the definition corrected by Georg Fischer, Jun 08 2022
Showing 1-3 of 3 results.