A293411
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4.
Original entry on oeis.org
1, 2, 3, 4, 7, 12, 19, 30, 49, 80, 129, 208, 337, 546, 883, 1428, 2311, 3740, 6051, 9790, 15841, 25632, 41473, 67104, 108577, 175682, 284259, 459940, 744199, 1204140, 1948339, 3152478, 5100817, 8253296, 13354113, 21607408, 34961521, 56568930, 91530451
Offset: 0
-
LinearRecurrence[{1, 0, 1, 1}, {1, 2, 3, 4}, 100]
A295620
Solution of the complementary equation a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4) + b(n-4), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 3, 4, 12, 20, 49, 85, 177, 304, 578, 979, 1765, 2953, 5150, 8538, 14570, 23997, 40352, 66149, 110094, 179867, 297172, 484313, 795934, 1294823, 2119684, 3443689, 5621258, 9123343, 14860404, 24100573, 39192618, 63526879, 103182816, 167177109, 271286602
Offset: 0
a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, so that
b(4) = 9 (least "new number")
a(4) = a(3) + 3*a(2) -2*a(1) - 2*a(0) + b(0) = 12
Complement: (b(n)) = (5, 6, 7, 8, 9, 10, 11, 13, 14, 15, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4;
b[0] = 5; b[1] = 6; b[2] = 7; b[3] = 8;
a[n_] := a[n] = a[n - 1] + 3*a[n - 2] - 2*a[n - 3] - 2 a[n - 4] + b[n - 4];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
z = 36; Table[a[n], {n, 0, z}] (* A295620 *)
Table[b[n], {n, 0, 20}] (*complement *)
A295621
Solution of the complementary equation a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4) + b(n-3), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 3, 4, 13, 22, 55, 96, 201, 346, 659, 1117, 2015, 3372, 5882, 9752, 16643, 27411, 46093, 75559, 125754, 205448, 339432, 553177, 909097, 1478897, 2421000, 3933174, 6420218, 10419979, 16972319, 27525507, 44762106, 72554068, 117844772, 190931789, 309833797
Offset: 0
a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, b(0) = 5, b(1) = 6, b(2) = 7, b(3) = 8, so that
b(4) = 9 (least "new number")
a(4) = a(3) + 3*a(2) -2*a(1) - 2*a(0) + b(1) = 13
Complement: (b(n)) = (5, 6, 7, 8, 9, 10, 11, 12, 14, 15, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4;
b[0] = 5; b[1] = 6; b[2] = 7; b[3] = 8;
a[n_] := a[n] = a[n - 1] + 3*a[n - 2] - 2*a[n - 3] - 2 a[n - 4] + b[n - 3];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
z = 36; Table[a[n], {n, 0, z}] (* A295621 *)
Table[b[n], {n, 0, 20}] (*complement *)
Showing 1-3 of 3 results.
Comments