A295643 Squares repeated 4 times; a(n) = floor(n/4)^2.
0, 0, 0, 0, 1, 1, 1, 1, 4, 4, 4, 4, 9, 9, 9, 9, 16, 16, 16, 16, 25, 25, 25, 25, 36, 36, 36, 36, 49, 49, 49, 49, 64, 64, 64, 64, 81, 81, 81, 81, 100, 100, 100, 100, 121, 121, 121, 121, 144, 144, 144, 144, 169, 169, 169, 169, 196, 196, 196, 196, 225, 225, 225
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to partitions
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1).
Programs
-
Magma
[Floor(n/4)^2 : n in [0..100]];
-
Maple
A295643:=n->floor(n/4)^2: seq(A295643(n), n=0..100);
-
Mathematica
Floor[Range[0, 80]/4]^2
-
PARI
concat(vector(4), Vec(x^4*(1 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)^2) + O(x^100))) \\ Colin Barker, Nov 25 2017
-
PARI
a(n) = (n\4)^2; \\ Altug Alkan, Dec 17 2017
-
Python
def A295643(n): return (n>>2)**2 # Chai Wah Wu, Feb 06 2023
Formula
a(n) = A002265(n)^2.
a(4n) = A000290(n).
a(n) = Sum_{i=1..floor(n/2)-1} i * (i mod 2).
From Colin Barker, Nov 25 2017: (Start)
G.f.: x^4*(1 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)^2).
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n>8.
(End)
a(n) = (1/16)*(n-(3-(-1)^n-2*(-1)^((2*n-1+(-1)^n)/4))/2)^2. - Iain Fox, Dec 18 2017
Comments